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ABSTRACT 

The analysis of gene regulatory networks has emerged as a leading paradigm for 

understanding how molecules inside cells communicate, process inputs, and coordinate 

responses to perform processes that sustain cell’s life. Such networks are subject to internal 

noise, which occurs due to small number of molecules taking part in some reactions within a 

cell. This inherent stochasticity in regulatory networks can have major effects on a cell’s fate. It 

can produce different phenotypes for genetically identical organisms and can lead to different 

cellular behaviors. Understanding the effects of noise and how cells adapt to it became an 

important issue in systems biology.  

The aim of this thesis is to address two broad challenges posed by stochastic regulatory 

networks: (1) optimally finding the network characteristics/parameters; (2) quantifying the 

impact of noise on the observed dynamics. To address the inference of a stochastic network’s 

parameters, two ensemble Markov Chain Monte Carlo (MCMC) methods were developed. 

They were used to find parameter sets that best describe the observed behavior of an oscillatory  

 



 

 

gene network, the clock network of model organism Neurosporra crassa. Both methods used 

the average periodogram as a fitting criterion for simulating the behavior observed in the single 

cell data. In the first method, Parallel Tempering was successfully used in modeling the clock 

behavior of single cells observed in the dark (D/D). In the second method, a combination of 

Particle Swarm Optimization algorithms was used to simulate the light 

entrainment/synchronization of single cells by light observed in a series of 3 light/dark (L/D) 

experiments.  

For the (D/D) and (L/D) experiments, we were able to test the Stochastic Resonance 

Hypothesis (SRH) to see whether the intrinsic noise was the main driver of the oscillations. The 

test showed that stochastic resonance is produced for a single optimal level of noise across all 

four experiments, a remarkable fact that shows how cells can adapt to the stochastic 

intracellular noise and use it to their benefit. 
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CHAPTER 1 

INTRODUCTION 

 

In living cells, fluctuations of molecular numbers are inevitable under certain conditions. On 

one hand, such random fluctuations (noise) may impair signal propagation and hamper the 

coordination of cellular activities. On the other hand, noise in gene expression introduces 

phenotypic heterogeneity in an isogenic population, which may facilitate cellular 

differentiation or may be beneficial in heterogeneous environments. Total noise is typically 

divided into two components: intrinsic and extrinsic. Intrinsic noise, by definition, originates in 

the randomness associated with discrete, rare biomolecular events (e.g., mRNA synthesis), 

when few molecules are involved. The remaining noise, which measures fluctuations in the 

regulation of a gene, is lumped together as extrinsic noise. Cells have learned to adapt to 

different levels of noise and started to use it to their advantage. For instance, circadian rhythms, 

which provide internal daily periodicity, are used by a wide range of organisms to anticipate 

daily changes in the environment. These organisms generate circadian periodicity by similar 

biochemical networks within a single cell. A model based on the common features of these 

biochemical networks shows that a circadian network can oscillate reliably in the presence of 

stochastic biochemical noise even when cellular conditions are altered.  
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Ability to resist such perturbations might impose several constraints on the oscillatory 

mechanism. To be able to function reliably in the presence of internal noise means that a very 

robust oscillatory mechanism has evolved in the cells. Internal noise is very important when 

there are just a few numbers of molecules in the system, as it usually happens in the cell. To be 

able to display an oscillatory behavior with the same period in the presence of just few numbers 

of molecules and in the noisy cellular environment might seem puzzling at first.  

In this thesis we try to unravel how circadian rhythms are maintained and affected by 

the intrinsic cellular noise in the clock network of a model organism, the filamentous fungus 

Neurospora crassa,  Predicting and understanding the dynamics of a genetic network 

describing how the clock functions is a challenge. The problem facing biologists trying to 

understand such a genetic network is that the model parameters are mostly unknown, and the 

experimental data are noisy and limited. Most genetic networks, such as that for the biological 

clock, are part of much larger modules controlling fundamental processes in the cell, such as 

metabolism, development, or response to environmental signals. We use ensemble methods to 

develop models that simulate the stochastic behavior of the clock network. Markov Chain 

Monte Carlo (MCMC) methods and genetic algorithms are used to generate random samples of 

models. For each model sampled, we use Gillespie algorithm to describe how the clock 

network evolves in time. We develop novel parallel algorithms on the General Purpose 

Graphical Processing Unit (or GPGPU) to deploy these ensemble methods. 

The organization for the rest of this dissertation is as follows. 

In chapter 2 we develop two ensemble methods, one using Metropolis-Hastings algorithm and 

one using Parallel Tempering algorithm to simulate the behavior of the clock network observed 
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in the dark. As a goodness-of-fit measure we use the chi-square value given by the distance 

between average periodogram of the simulated trajectories and average periodogram of the 

observed cells. We also test the Stochastic Resonance Hypothesis and compare the parameters 

obtained in our stochastic models with those obtained from a deterministic model. 

In chapter 3 we talk about 4 measures of phase and see how the continuized Hilbert phase 

measure can help us study the synchronization of these biological oscillators. We will also see 

that this phase measure provides us with a goodness of fit test independent of the test based on 

average periodogram.    

In chapter 4 we study the light entrainment by the clock network observed under dark/dark and 

3 light/dark regimes.  We propose an ensemble method based on two genetic algorithms to fit 

the 4 data sets. The proposed method fits the data very well. We also test the Stochastic 

Resonance Hypothesis once again and discover that there is a single optimal level of noise for 

all 4 experiments. We will see stochastic resonance in full display. 

Chapter 5 summarizes our findings and indicates future work that can be done to improve our 

findings and algorithms. 
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CHAPTER 2 

ENSEMBLE METHODS FOR STOCHASTIC NETWORKS WITH SPECIAL REFERENCE 

TO THE BIOLOGICAL CLOCK OF NEUROSPORA CRASSA 

  

 

 

 

 

 

 

 

Caranica, C., A. Al-Omari, Z. Deng, J. Griffith, R. Nilsen, L. Mao, J. Arnold and H-B. 

Schuttler 2018 PLoS ONE 13(5): e0196435.  

Reprinted here with permission of publisher 

 

 



5 

 

ABSTRACT 

A major challenge in systems biology is to infer the parameters of regulatory networks that 

operate in a noisy environment, such as in a single cell. In a stochastic regime it is hard to 

distinguish noise from the real signal and to infer the noise contribution to the dynamical 

behavior. When the genetic network displays oscillatory dynamics, it is even harder to infer the 

parameters that produce the oscillations. To address this issue, we introduce a new estimation 

method built on a combination of stochastic simulations, mass action kinetics and ensemble 

network simulations in which we match the average periodogram and phase of the model to 

that of the data. The method is relatively fast (compared to Metropolis-Hastings Monte Carlo 

Methods), easy to parallelize, applicable to large oscillatory networks and large (~2000 cells) 

single cell expression data sets, and it quantifies the noise impact on the observed dynamics. 

Standard errors of estimated rate coefficients are typically two orders of magnitude smaller 

than the mean from single cell experiments with on the order of ~1000 cells.  We also provide 

a method to assess the goodness of fit of the stochastic network using the Hilbert phase of 

single cells. An analysis of phase departures from the null model with no communication 

between cells is consistent with a hypothesis of Stochastic Resonance describing single cell 

oscillators. Stochastic Resonance provides a physical mechanism whereby intracellular noise 

plays a positive role in establishing oscillatory behavior, but may require model parameters, 

such as rate coefficients, that differ substantially from those extracted at the macroscopic level 

from measurements on populations of millions of communicating, synchronized cells.   
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2.1 INTRODUCTION 

Gene regulation is an intrinsically stochastic process [1-3].  The low copy numbers of some 

molecules, such as genes, involved in gene regulation lead to a noisy time series of numbers of 

molecular species in a gene regulatory network within a single cell. This randomness can 

produce different phenotypes for genetically identical organisms [4, 5]and for a single 

transcription factor [3].  This randomness can also produce coordinated regulation of target 

genes [6], and for a combination of  2 or more transcription factors, combinatorial regulation 

by changes in relative pulse timing between transcription factors [7], and have a role in the 

evolution of genetic networks [8]. To measure this stochasticity and to extract information 

about the regulatory network from the numbers of molecular species over time has become a 

major challenge in systems biology[ 9, 10].   Recent progress in addressing this task has been 

due mainly to advances in high-throughput single-cell measurement techniques for measuring 

gene expression, yielding large data sets on gene expression in single cells and the 

development of computational models used to explain these data [11-15].  

Computational models should be able to capture the main features of the experimental 

data, such as the histories of molecular species in a cell, and provide new insights about the 

biological process operating in single cells [16, 17]. To build such a model, a critical step is to 

quantify the many unknown parameters that characterize the behavior of a single cell [18]. For 

genetic networks describing single cells these parameters include, for example, reaction rate 

coefficients, initial molecular numbers, mRNA/DNA ratios, and Hill coefficients. These 

quantities are difficult to measure directly on single cells. Usually only a few of those predicted 
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by the model are available from experiments, such as the levels of a few proteins or mRNAs, 

observed through their fluorescence [14, 19]. 

In the context of gene regulation, we need to simulate the behavior of whole gene 

networks in single cells to fit these models. One of the earliest methods to simulate stochastic 

gene networks was developed by Gillespie [20]. It allows exact simulation of stochastic 

biochemical networks, in principle for any duration of time and network size. By measuring the 

trajectories of many cells, we can find desired statistical summaries of the period, phase, and 

amplitude for the time series of molecular numbers in a cell. By comparing these with 

analogous summaries generated by a stochastic model, we can infer parameters of the 

underlying stochastic process. The only drawback of Gillespie's method is that it can take a 

long time to run and generating summary statistics with a high degree of accuracy can be 

computationally prohibitive. Approximate stochastic simulation methods can be used to speed 

up the computations but introduce additional errors that are difficult to account for in the model 

fitting process.  

The 𝜏-leaping methods [21] is such an approximation to the exact Gillespie algorithm. 

Instead of simulating a succession of reactions one at a time, a Poisson distribution is used to 

approximate the number of times each reaction is occurring in that time interval. This can 

decrease the simulation time significantly if certain conditions are met. But the Poisson 

approximation introduces additional error, and supplementary computations are then needed to 

verify that the approximation is accurate. 
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Maximum-likelihood methods have also been used for fitting stochastic networks [22]. 

These methods select those parameter values that maximize the likelihood that the model 

generates the observed data. The main difference among these approaches is the way the 

maximum-likelihood estimator is calculated. Some of the methods use Markov Chain Monte 

Carlo Methods [23, 24], to provide a direct solution of the stochastic model’s maximum 

likelihood estimator or linear approximations thereof [25].  Although these existing methods 

work well for small networks, they become too cumbersome for larger networks. Many of them 

produce only point estimates of the network parameters, which cannot capture the behavior of 

the system due to the noise in these point estimates. Other approximate methods of stochastic 

network identification have been recently proposed using either moment-closure or volume 

expansion  methods to approximate the chemical master equation describing the stochastic 

network to simplify the fitting problem [26]. 

Ensemble methods solve this problem. Based on a bayesian posterior distribution or 

likelihood function, they produce large samples of parameter values consistent with observed 

data that can then be model-averaged to capture the system behavior [27]. Consequently, they 

can produce confidence intervals of the model parameters [28]. More recently, these methods 

have evolved into Approximate Bayesian Computation (ABC) and have been used successfully 

in other biological contexts [27, 29]. For large networks, ensemble-based parameter inference 

methods employ Markov Chain Monte Carlo (MCMC) simulations techniques to draw samples 

from the high-dimensional model parameter spaces [27, 30, 31]. These MCMC simulations are 

highly CPU time consumptive and one of the challenges is then to find efficient computational 

approaches to make these simulations feasible within reasonable computation time limits.  



9 

 

In modeling stochastic molecular time series data, it is important to notice that the 

individual random trajectories of molecule numbers cannot, in general, be compared directly to 

individual observed single-cell fluorescence time series. The stochastic variability of the 

individual trajectories in both model and experiment preclude a meaningful comparison. In the 

context of potentially oscillatory data, as expected in the biological clock system, it is also not 

useful to compare the average of model molecular time series to the average over the observed 

single fluorescent data from all cells. Both model and observed trajectories are typically 

randomly phase-shifted relative to each other and averaging them tends to cancel out the 

oscillatory part of the signal. Consequently, it is important to design meaningful summary 

statistics which preserve the information about the oscillatory signal, including oscillation 

periods, phases and amplitudes, when averaged over all cells and model trajectories, 

respectively [32-34].  

One aim of this paper is to provide a fast, computationally feasible method for 

parameter inference in a stochastic oscillatory biochemical network and show its successful 

application to understanding one of the best studied biological clocks at the molecular level 

[35]. The method proposed uses different MCMC methods, such as Metropolis-Hastings and 

parallel tempering, to fit the average periodogram [36], also known as the power spectrum, of 

the model to the average periodogram of the data, where the average is taken over the 

periodograms of individual cell fluorescent trajectories. The periodogram is a summary statistic 

which preserves two of the relevant features of an oscillatory process, its amplitude and period. 

We use deterministic mass action kinetics to initialize the Markov chains with parameter values 

that produce small chi-squared values relatively fast on General Purpose Graphics Processor 
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Units (GPGPUs) [37].  Thus, we can rapidly obtain model parameter sets that capture the 

important periods and amplitudes in the data. These models can be further used to match the 

observed phases to test the adequacy of the models.  

A second aim of the paper is to explore whether the oscillations in such a network, 

might actually be caused by or reinforced by the molecular noise in the cell through a 

Stochastic Resonance-like phenomenon [38-40].  Stochastic Resonance is a theory that arose in 

physics [38] to explain the behavior of physical oscillators.  Under the Stochastic Resonance 

Hypothesis the stochastic intracellular noise is assumed to have a positive role in generating 

periodic behavior provided this noise is not too little or too large in magnitude.  The key to the 

Stochastic Resonance Hypothesis is that the presence of oscillations has a nonlinear relation 

with the level of stochastic intracellular noise. 

It is therefore important in explaining oscillations in a stochastic network to infer the 

impact that noise has on cellular mechanisms and to quantify how these mechanisms respond to 

different noise levels. Our model and methods to fit a stochastic network (Fig 2.1) were 

developed with these purposes in mind. 

 

2.2 MODEL 

Our models simulate a well-stirred biochemical system with N molecular species 

{𝑆1, 𝑆2, … , 𝑆𝑁} having discrete-valued molecular numbers given by 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑁}. These 

molecular numbers change in time through the firing of M reactions {𝑅1, 𝑅1, … , 𝑅𝑀}. The state 
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of the system at a time 𝑡  is given by the random vector 𝑋(𝑡) =  {𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑁(𝑡)}  with 

𝑋𝑖(𝑡)
 
being the number of molecules of species 𝑆𝑖 at time 𝑡, 𝑖 = 1,… ,𝑁.   

Knowing the state of the system at time 𝑡, 𝑋(𝑡) = 𝑥, we assign to each reaction 𝑅𝑗 a 

propensity function 𝑎𝑗(𝑥) whose product with an infinitesimal time increment 𝑑𝑡 determines 

the probability that reaction 𝑅𝑗 fires in the next infinitesimal time interval [𝑡, 𝑡 + 𝑑𝑡). These 

propensity functions 𝑎𝑗(𝑥), 𝑗 = 1,… ,𝑀, , are defined based on mass action kinetics, 𝑎𝑗(𝑥) =

𝑘𝑗𝑏𝑗(𝑥), where 𝑘𝑗 is a kinetic constant specific to reaction 𝑅𝑗and 𝑏𝑗(𝑥) counts the number of 

ways reaction 𝑅𝑗can occur given state 𝑋. For instance, for mono-molecular, homo-bimolecular 

and hetero-bimolecular reactions 𝑏(𝑥) takes the form 𝑥1, 𝑥1(𝑥1 − 1)/2 and 𝑥1𝑥2, respectively. 

The sum of all propensities is denoted by 𝑎0(𝑥).  

          The parameters we need to infer are initial molecular numbers and the kinetic constants, 

Θ = {𝑋1(0), 𝑋2(0), … , 𝑋𝑁(0), 𝑘1, … , 𝑘𝑀}. Gillespie showed that from knowing these 

parameters we can build an exact sample trajectory of the network to find the molecular 

numbers at any later time. Thus, a parameter set Θ gives a model of the network’s dynamics. 

        Our study is focused on a well-studied oscillatory network, the clock network of 

Neurospora crassa [28] . This network is presented in Fig 2.1. The species with superscript r 

denotes an mRNA; the ones in capital letters are proteins. The rest are genes. As shown in Yu 

et al. [28], we can consider the protein WC-2 to be constant, so we can ignore the species wc-

21, wc-2r1and the reactions in which they are involved. Also, wc-11
 is constant. Thus, we 

reduce the network to 12 molecular species and 22 reactions, which makes our parameter space 

34-dimensional. Earlier work [28]  has shown that this is a good approximation. This particular 
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model is in one of two classes of negative feedback models for clocks in different organisms 

termed a Hill-type transcriptional repression model [41, 42].    

Some essential features of the model are captured in the cartoon (Fig 2.1B). The genes 

white collar-1 (wc-1) and white collar-2 (wc-2) produce a heterodimer WCC = WC-1/WC-2, 

which activates the oscillator gene frequency (frq) and a clock-controlled gene (ccg). The FRQ 

oscillator protein in turn provides a negative feedback loop to deactivate WCC.  The genes wc-

1 and wc-2 encode the positive elements in the clock mechanism, and frq encodes a negative 

element[28].  The FRQ protein also appears to have a role in stabilizing the wc-1 mRNA (wc-

1r)[28]. 

 

2.3 MATERIALS AND METHODS 

2.3.1 SINGLE CELL DATA OF NEUROSPORA CRASSA   

Two single cell data sets were used [13].  One data set has 868 single cells; the second one as a 

replicate has 1591 single cells. These two data sets were generated through time-dependent 

oscillatory fluorescent measurement on single N. crassa cells encapsulated in aqueous droplets 

of ~100 um in diameter and physically separated from each other as a result. The 

measurements were through the use of a fluorescent recorder (mCherry) linked to a promoter 

on a clock controlled gene-2 (ccg-2) [43]. We obtained one data set including the time series of 

868 single cells over ten days, and another data set including the time series of 1,591 single 

cells over ten days. The second data set is attached as a supplementary excel file.  An improved 

cell-tracking method was used to bring the data set to 1,644 cells from 1,591 cells as originally 



13 

 

described [13]. There are 563 time points per cell taken from time 0 to time 261.5 hours every 

half hour.  Each single cell time series is Rhodamine B normalized, detrended, and bias-

corrected [13].  Only 61st to 540th time points were used in the analysis to allow each oscillator 

the opportunity to reach a stable limit cycle and to maintain cell viability at the end of the 

series.  

 

2.3.2 RESCALING FROM DETERMINISTIC TO STOCHASTIC UNITS 

 In previous work [28] our clock network was studied in a deterministic framework. An 

ensemble of oscillating network models quantitatively consistent with available RNA and 

protein profiling data was found. If we wish to use concentration results from these 

deterministic models as inputs in a stochastic framework, then we need to rescale the initial 

molecular concentrations in the deterministic model to molecular numbers in the stochastic 

model, that is non-negative integers counting molecules in Fig 2.1, while preserving the 

deterministic dynamics [44]. This conversion reduces to a change in measurement units for 

each species such that the total gene concentration of a species in the new molecular number 

units is 1 in a single cell, and the time-averaged mRNA and protein concentrations in molecular 

number units are equal to the observed RNA:DNA and protein:DNA ratio, respectively. The 

RNA:DNA and protein:DNA ratios were determined experimentally, as described below, and 

summarized in Table 1.  The RNA:DNA and protein:DNA ratios used below were 128.7 and 

412, respectively,  averages from Table 2.1. 
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Figure 2.1 (A) The stochastic clock network of Neurospora crassa in a single cell. From[13, 28] 

The boxes outlined (in red) with dashed lines and labeled a through i in red, define regions of 

the network between which there is little or no net flow of molecules.  (B) Cartoon of the 

stochastic network highlighting important features in panel A. Arrows are used to indicate a 

positive effect.  A line with a bar (-|) is used to indicate a negative effect 

 

Following an established notation [28], the 12 species concentrations [wc-1r0], [wc-1r1], 

[WC-1], [WCC], [frq0 ], [frq1 ], [frqr1], [FRQ], [ccg0 ], [ccg1 ], [ccgr1], and [CCG] are 

abbreviated here to 𝑢𝑟0, 𝑢𝑟1, 𝑢𝑝, 𝑤, 𝑓0, 𝑓1, 𝑓𝑟 , 𝑓𝑝, 𝑔0, 𝑔1, 𝑔𝑟 , 𝑔𝑝, respectively, with constant total 
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gene concentrations 𝑓𝐺 = 𝑓0 + 𝑓1 and 𝑔𝐺 = 𝑔0 + 𝑔1.  To convert the parameters of the network 

from deterministic model units to molecular number units of counts of molecules in a cell we 

do the following: divide the network into separate components or “boxes” in such a way that 

two different boxes will be connected only through catalytic reactions (Fig 2.1). So, there will 

be no net flow of molecules between different boxes. Thus, the scales of measurement units 

between boxes can be varied independently without changing network dynamics. We obtain 9 

boxes denoted by letters from a to i.  They are: 

 a: 𝑤, 𝑣𝑝, 𝑢𝑝,  b: 𝑓0, 𝑓1,   c: 𝑓𝑟,  d:𝑓𝑝,  e: 𝑢𝑟0, 𝑢𝑟1,  f: 𝑣𝑟, g: 𝑔0, 𝑔1,  h:𝑔𝑟 and i: 𝑔𝑝. 

If we denote the model units by 𝑚𝑢 and real molecular number units by 𝑟𝑢, then 

knowing the value of a concentration parameter expressed in 𝑚𝑢, we need to convert it to a 

value that uses 𝑟𝑢. We just need to find the ratio 
𝑚𝑢

𝑟𝑢
. Each box will have its own 

𝑚𝑢

𝑟𝑢
 ratio.  For 

an arbitrary box z, we denote by (
𝑚𝑢

𝑟𝑢
)
𝑧
its conversion ratio.  

For the box containing a gene, like box b with species 𝑓0, 𝑓1, we have the values 

  
𝑓0

𝑚𝑢
,
𝑓1

𝑚𝑢
  = (.356365, .0824576)  

from the deterministic model in Table 1 (column 2), so we know 

               𝑓𝐺,𝑚𝑢 =
𝑓0+𝑓1

𝑚𝑢
=  0.4388226.  

Because there is just one frq gene in the cell, we also have 

                
𝑓0+𝑓1

𝑟𝑢
= 1 
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Then 

                 (
𝑚𝑢

𝑟𝑢
)
𝑏
=

1

𝑓𝐺,𝑚𝑢
=2.278825. 

When applying this conversion factor, a gene is converted to the nearest whole gene so there is 

not a fractional gene. 

For boxes with an mRNA we take the average value of an mRNA concentration 

parameter over a simulated trajectory obtained using the deterministic model and compare it to 

the RNA:DNA ratio. If the simulated trajectory contains a transient signal, we discard the  

corresponding part of the trajectory. Since the deterministic models display sustained 

oscillations, we want our mRNA deterministic values to come from the purely oscillatory part 

of the solution (not the transient part).  

Thus, for box c we find 

           𝑓𝑟,𝑚𝑢 =
𝑓𝑟̅

𝑚𝑢
=

1

𝑡1−𝑡0
∫

𝑓𝑟(𝑡)

𝑚𝑢

𝑡1
𝑡0

𝑑𝑡,  

where 𝑓𝑟(𝑡) is the value of 𝑓𝑟 at time 𝑡 in the deterministic simulation of the network between 

times  𝑡0 and 𝑡1. In the time interval [𝑡0, 𝑡1) the deterministic trajectory traced 10 complete 

cycles. 

Also, 

            
𝑓𝑟̅

𝑟𝑢
= 𝑅𝑅𝑁𝐴:𝑔𝑒𝑛𝑒  

is the RNA:DNA ratio for frq species, namely 128.7.  
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This ratio is experimentally determined from Table 2.1. Then, 

            (
𝑚𝑢

𝑟𝑢
)
𝑐
=
𝑅𝑅𝑁𝐴:𝑔𝑒𝑛𝑒

𝑓𝑟,𝑚𝑢

 

=   128.7/ 0.02319352=5548.963. 

Similarly, for boxes with a protein we will use Protein:DNA ratio of 412.1 of the 

corresponding species.  All box ratios can be found in this way. For instance, for box d,   

            (
𝑚𝑢

𝑟𝑢
)
𝑑
=
𝑅𝑃𝑟𝑜𝑡:𝐷𝑁𝐴

𝑓𝑝,𝑚𝑢
=

412.1

0.46295
= 890.1612 

The ratios RNA:DNA and Protein:DNA were found experimentally from Table 2.1. 

Then, to convert a molecular concentration given by a deterministic model to a 

molecular number we just multiply the molecular number by the conversion ratio of the box to 

which the species belongs. To change from 
𝑆

𝑚𝑢
 to 

𝑆

𝑟𝑢
, we need to multiply the former term by 

𝑚𝑢

𝑟𝑢
, but this ratio depends on the box in which the species 𝑆 resides.  The value 

𝑆

𝑟𝑢
 is then 

rounded to the closest integer.  If, as above, the deterministic model contains a transient signal, 

we discarded it.  We took 
𝑠

𝑚𝑢
≡ 𝑠(𝑡0), that is concentration to be converted is the value of 

species S at the beginning of oscillatory part of deterministic trajectory of S. 

To convert the reaction rates from model units to real units we use the law of mass action and 

the conversion ratios found at step 2. 

We will show how the method works using 𝐿3, the translation reaction to FRQ. 

We have  

            𝑓𝑟
     𝐿3       
→    𝑓𝑟 + 𝑓𝑝.   
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Then 

             
𝑑𝑓𝑝

𝑑𝑡
= 𝐿3 ∗ 𝑓𝑟. 

Using model units, we have  

           
𝑑𝑓𝑝/𝑚𝑢𝑑

𝑑𝑡/ℎ𝑟
=

ℎ𝑟

𝑚𝑢𝑑
∗ 𝐿3 ∗

𝑓𝑟

𝑚𝑢𝑐
∗ 𝑚𝑢𝑐 = 𝐿3 ∗ ℎ𝑟 ∗

𝑚𝑢𝑐

𝑚𝑢𝑑
∗
𝑓𝑟

𝑚𝑢𝑐
= 𝐿3,𝑚𝑢 ∗

𝑓𝑟

𝑚𝑢𝑐
, 

where hr stands for hour, our unit of time, and 𝑚𝑢𝑑 and 𝑚𝑢𝑐 are the model unit of 

concentration for species in box d and 𝑐, respectively. 

𝐿3,𝑚𝑢 and 
𝑓𝑟

𝑚𝑢𝑐
 are the values of 𝐿3  and 𝑓𝑟 expressed in model units. They are found from the 

deterministic model. 

When 𝐿3 is expressed in molecular number units, we have   

      𝐿3,𝑟𝑢 =
𝐿3

1/ℎ𝑟
= 𝐿3 ∗ ℎ𝑟 = 𝐿3,𝑚𝑢 ∗

𝑚𝑢𝑑

𝑚𝑢𝑐
= 𝐿3,𝑚𝑢 ∗

(𝑚𝑢/𝑟𝑢)𝑑

(𝑚𝑢/𝑟𝑢)𝑐
 =3.02387

890.1612

5548.963
= 0.4851. 

where 𝐿3,𝑟𝑢 is the value of  𝐿3 expressed in molecular number units. 

Likewise, the other reaction rates can be converted from model units to molecular number units 

using the deterministic values and the conversion ratios found in step 2. 

Note that when converting the reaction rates, we keep the ratios 
𝑑𝑆

𝑑𝑡
 the same. Here 𝑆 is 

the concentration of a species. We do not change the qualitative behavior of the system by 

conversion, just express it in different measurement units. 
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2.3.3 METHOD OF DETERMINATION OF PROTEIN:DNA AND RNA:DNA RATIOS BY  

SPECIFYING THE SCALE OF STOCHASTIC MODEL  

The protein:DNA and RNA:DNA ratios in a cell were experimentally determined to set the 

scale parameters for the stochastic network.  Protein, RNA, and DNA samples were extracted 

simultaneously from cultures of Neurospora crassa, strain FGSC 1858 “bd” (Fungal Genetics 

Stock Center, 4024 Throckman Plant Sciences Center, Kansas State University, Manhattan, KS 

66506). The cultures were grown over 48 hours in the dark such that the total growth time was 

kept constant as previously described[45] under the “cycle 1” experiment.   A kit from “Norgen 

Biotek Corporation,”(3430 Schmon Parkway, Throld, Ontario, Canada L2V 4Y6) was used to 

extract RNA, DNA and protein from the same sample. The kit used was Product # 47700, 

“RNA/DNA/Protein Purification Plus Kit.” Their protocol was followed, including the step 1F, 

for cell lysate preparation for fungi. Samples were done from thirteen different time points 

spaced at 4-hour intervals over 48 hours. A total of three preps were done for each time point, 

with a usable sample detected in 2-3 of the preps.  

The DNA and Protein amounts from each of these preps, were determined on a “Qubit 2.0 

Fluorometer” instrument (ThermoFisher Scientific, 168 Third Avenue, Waltham MA 02451). 

The RNA concentration was determined using an Agilent BioAnalyzer RNA 6000 Nano chip 

(Agilent, Palo Alto, California). The amounts were converted to nanomoles [46], averaged, and 

then ratios RNA:DNA and DNA:Protein were calculated (Table 2.1). 
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2.3.4 STOCHASTIC SIMULATION ALGORITHM-DIRECT METHOD  

For simulating exact trajectories of a network’s temporal evolution, we used a variant of 

Gillespie’s simulation algorithm called the direct method [13, 20]. Gillespie showed that 

knowing the state of the network at a time 𝑡, we can infer the exact distribution of the time of 

next reaction, 𝑡 + 𝜏, and the probability of each reaction taking place at time 𝑡 + 𝜏. Thus, we 

obtain an exact distribution of the state of the network at time𝑡 + 𝜏. The Direct method uses 

these distributions to sequentially sample the time of the next reaction and the reaction that 

occurs next. It works as follows.  

Given a set of parameters Θ = {𝑋1(0), 𝑋2(0),… , 𝑋𝑁(0), 𝑘1, … , 𝑘𝑀} and a final time 𝑇, 

we do the following: 

(1) Initialize the system, i.e. set 𝑡 = 0 and 𝑋 = 𝑥 = {𝑥1(0), 𝑥2(0),… , 𝑥𝑁(0)}.. 

(2) Calculate the propensities, 𝑎𝑗(𝑥), 𝑗 = 1, . . . 𝑀,, and their sum 𝑎0 = ∑ 𝑎𝑗(𝑥)
𝑀
𝑗=1 .                                                            

(3) Draw the random time step value to the next reaction, 𝜏,  as an exponential random variable            

with mean 1/𝑎0(𝑥)  and draw the type of the next reaction to be executed, 𝑗𝑛𝑒𝑥𝑡, as a discrete 

random variable with probabilities 
𝑎𝑗(𝑥)

𝑎0(𝑥)
, 𝑗 = 1,…𝑀.   

 (4) Update the state 𝑋 assuming reaction 𝑅𝑗𝑛𝑒𝑥𝑡 took place. Update the time, 𝑡 = 𝑡 + 𝜏. 

(5) If 𝑡 < 𝑇 go to step 2, else stop. 

The Direct method yields a trajectory of the network state {𝑥(𝑡0), 𝑥(𝑡1), …𝑥(𝑡𝑘)}
 
in the 

time interval [0, 𝑇]. The trajectory can be thought of as belonging to a single cell. We refer to 
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this trajectory as a Gillespie trajectory (of a single cell).  Here 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘 < 𝑇with 

𝑡𝑖,i=1,…,k, being the reaction times of the reactions that fire before 𝑇. Such a trajectory 

completely identifies the network state at any time in the interval [0, 𝑇]. 

 

2.3.5 THE FITTING METHOD  

To analyze the initial behavior of the clock network we collected data on a CCG protein from 

868 single cells. The fluorescence level of the CCG protein in each cell was recorded every 

half hour for 10 days [13].  

As a first pass, we constructed a normalized periodogram for each cell, and then we 

calculated the average (over 868 cells) of these 868 periodograms. Through normalization we 

made the sum of normalized periodogram values equal to 1. Normalization enabled us to use 

periodogram values that are invariant to scaling [13].  We did not use this periodogram 

normalization in the more sophisticated analysis of the 1591 single cell data set where we 

applied a bias-correction to the average observed periodogram (See section below on removing 

the detection noise). 

At the level of millions of cells, the level of CCG is circadian, i.e. cyclical with a period 

of ~24 hours. To obtain stationary time series we used the moving average method to remove 

the 24-hour linear trend from the original time series. The periodograms were calculated on 

detrended data [13]. We assume the average periodogram describes the dynamical behavior of 

CCG protein because it captures the periods and amplitudes in the system.  
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We selected this summary statistic in fitting the stochastic network because we looked 

for models with periodic behavior at the single cell level.  This choice was first proposed to 

describe stochastic oscillatory networks near their Hopf bifurcation (i.e., a point in the 

parameter space where oscillations first appear), and the use of the periodogram as the statistic 

driving the fitting was successfully used in this context [36].  The periodogram captures two 

important features of an oscillation, amplitude and period. As we expect the oscillatory 

trajectory to be a mixture of sinusoids with only few of them being relevant, we think the 

important features of an oscillatory trajectory are embedded in its periodogram. Also, unlike 

other methods that try to match individual trajectories produced by a stochastic model [23] 

[47], we try to fit the average of these periodograms. Our view is that to compare two 

stochastic models it is better to use summary statistics that relates to an average of the 

stochastic trajectories rather than comparing individual trajectories for four reasons. One, the 

individual stochastic trajectories are very noisy.  Two, averaging the periodogram of individual 

trajectories reduces this noise.  Three, this fitting approach has already proven successful [36]. 

Four, fitting using 1000s of individual trajectories by the method of maximum likelihood has 

not proved computationally tractable. 

 

2.3.6 MARKOV CHAIN MONTE CARLO (MCMC) METHODS  

We used MCMC methods [13, 27, 28] to find sets of parameters in the stochastic network (Fig 

2.1) that best describe the observed average periodogram of a collection of cells.  In each 

Monte Carlo update we used Gillespie’s direct method to simulate 1024 Gillespie trajectories 
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of the system state using a given set of parameters. Here the parameters are the 12 initial 

molecular numbers and 22 reaction rates as described earlier in Materials and Methods. We 

calculated the average periodogram of simulated trajectories and determined how well it 

matched the cell average periodogram. Then we updated a randomly chosen parameter using 

the Metropolis –Hastings algorithm. The 1024 simulated trajectories were run in parallel on a 

GPU. 

The ensemble ℚ used to fit the average periodogram is 

ℚ(Θ) = Ω−1∏
1

√2𝜋𝜎𝑓
2

𝑓 𝑒𝑥𝑝(−
(𝑄𝑓
𝑐𝑒𝑙𝑙−𝑄𝑓

𝑠𝑖𝑚)
2

2𝜎𝑓
2 ) = 𝑒𝑥𝑝(−𝜒2/2)Ω−1∏

1

√2𝜋𝜎𝑓
2

𝑓             (1) 

where  𝑄𝑓
𝑐𝑒𝑙𝑙 𝑎𝑛𝑑 𝑄𝑓

𝑠𝑖𝑚  are average periodogram values of cell and simulated trajectories, 

respectively, calculated at frequency 𝑓.  The parameter 𝜎𝑓
2 is the variance of cell periodogram 

values at frequency 𝑓 and is determined experimentally by bootstrapping the periodograms of 

single cells.  The form of the likelihood entails invoking the Central Limit Theorem.  The 

associated 𝜒2 = −2𝑙𝑛ℚ + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

We initialized our Markov chains with  working oscillatory networks describing the 

clock at the macroscopic level of 107 cells determined previously by the ensemble method [28]. 

For each chain, we took a set of parameters from the deterministic ensemble family given in 

Yu et al.[28] and converted it to a set of stochastic parameters as described above.   

To make sure we are covering a broad region of the parameter space, we started 4 

Monte Carlo chains, each one with a different set of parameters. After running these Monte  
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Carlo chains for about 74,000 iterations we ended up with chi-squared values of different 

levels, see Fig 2.2 A.  

We concluded that each of these chains might have been trapped to a different local 

minimum. To avoid being stuck at a local minimum we introduced an alternate MCMC 

method, the parallel tempering algorithm[48, 49]. Each set of parameters used to start a  

Metropolis-Hastings chain was now used to start a parallel tempering algorithm (see Materials 

and Methods). 

Our Metropolis-Hastings algorithms were designed as random walk algorithms. The 

target density was ℚ. At iteration 𝑘 we randomly picked a parameter 𝑥𝑖
𝑘 of the parameter set 

𝑥𝑘 = (𝑥1
𝑘 , 𝑥2

𝑘 , … , 𝑥34
𝑘 ) and updated it using a uniform proposal kernel  𝑈(𝑥𝑖

𝑘 − 𝛼𝑖, 𝑥𝑖
𝑘 + 𝛼𝑖) , 

i.e. the proposal density was 

                       𝑞(𝑥𝑖
𝑘+1|𝑥𝑖

𝑘) =
1

2𝛼𝑖
𝐼
(𝑥𝑖
𝑘−𝛼𝑖,𝑥𝑖

𝑘+𝛼𝑖)
(𝑥𝑖
𝑘+1) . 

The proposed parameter set was 𝑦𝑘+1 = (𝑥1
𝑘 , 𝑥2

𝑘 , … 𝑥𝑖
𝑘+1, … , 𝑥34

𝑘 ).  Then, we set 

                       𝑥𝑘+1 = {
𝑦𝑘+1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜌(𝑥𝑘, 𝑦𝑘+1),

𝑥𝑘  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜌(𝑥𝑘, 𝑦𝑘+1)
},                                                           

where 𝜌(𝑥, 𝑦) = 𝑚𝑖𝑛{1, 𝐿(𝑦)/𝐿(𝑥)}. 

It is well known that for random walk Metropolis-Hastings algorithms the step-widths 

𝛼𝑖 must be fine-tuned to ensure the chain is converging in a manageable time. While we tried 

to optimize the choice of the 𝛼𝑖′𝑠, we noticed that it might take too long for some chains to 
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converge (Fig 2.2A). Parallel tempering algorithm avoids the calibration of these 

hyperparameters. 

 

2.3.7 PARALLEL TEMPERING AS AN ENSEMBLE METHOD  

The idea of a parallel tempering algorithm is to simulate 𝐾 replicas of the original system, each 

replica being simulated at a different temperature.  

So, each replica is a Markov chain having a tempered target distribution of the form 

 ℚ𝑇(Θ) = Ω
−1∏

1

√2𝜋𝑇𝜎𝑓
2

𝑓 𝑒𝑥𝑝(−
(𝑄𝑓
𝑐𝑒𝑙𝑙−𝑄𝑓

𝑠𝑖𝑚)
2

2𝑇𝜎𝑓
2 ) = 𝑒𝑥𝑝(−𝜒2/2)Ω−1∏

1

√2𝜋𝜎𝑓
2

𝑓  

For high “temperature” T, the peaks of ℚ𝑇  become flatter and broader, making the 

distribution easier to sample via MCMC methods. High-temperature replicas can sample large 

volumes of parameter space, whereas low-temperature chains are usually sampling from a local 

region of the parameter space which may trap them to a local minimum. Parallel tempering 

achieves superior results by allowing different replicas to exchange their states. Thus, high-

temperature replicas ensure that lower temperature chains can access different regions of the 

parameter space.  

The way that a parallel tempering run is set up is as follows. To a set of K replicas we 

assign temperatures from a grid 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑘, with 𝑇1 = 1 corresponding to our target 

replica. Each replica explores its tempered distribution using an MCMC method. After a 

predetermined number of in-chain iterations, swaps between usually adjacent replicas are 
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Figure 2.2 Monte Carlo simulations used for fitting average periodogram of the 868 single cell 

data.  (A) 4 chains run using Metropolis-Hastings algorithm. (B) 4 chains starting with the 

same parameters but run using Parallel Tempering algorithm. No bias-correctio correction was 

applied (see Materials and Methods) 

 

proposed. A proposed swap between replicas at temperatures 𝑇𝑖 and 𝑇𝑗 is accepted with 

probability  

                     𝜌𝑖𝑗 = 𝑚𝑖𝑛 {1,
ℚ𝑇𝑖(𝑥(𝑗))ℚ𝑇𝑗(𝑥(𝑖))

ℚ𝑇𝑖(𝑥(𝑖))ℚ𝑇𝑗(𝑥(𝑗))
}, 

where 𝑥(𝑖)is the state of ith replica. When a swap is accepted, the replicas exchange their 

positions in the parameter space; replica i takes configuration 𝑥(𝑗) 𝑎nd j assumes the position at 

𝑥(𝑖). Since hottest replicas can sample big regions of the parameter space, then, if their 

locations propagate to the coldest replica, they can help it explore different regions of 
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parameter space. Thus, the goal in choosing an effective grid of temperatures is to make sure 

the hottest replicas can freely explore the parameter space, i.e. choose 𝑇𝑘 big enough, and to 

choose the intermediate temperatures in such a way that 𝜌𝑖,𝑗′𝑠 are big enough to allow each 

replica to easily move between configurations sampled at different temperatures. 

 

2.3.8 CHOOSING THE GRID IN PARALLEL TEMPERING  

Now we show how we chose K, the number of replicas, TK, the maximum temperature and the 

temperature grid 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑘.  

Our method is based on a procedure described previously [50]. 

First, we chose the number of replicas 𝐾 = [√𝑑], where d is the number of components of 𝜃. 

Then we chose maximum temperature 𝑇K. We took 𝑇𝑘 =
𝜒2(𝜃0)

30
, i.e. we divided the chi-square 

value of our initial parameter set 𝜃(0) by 30. The hottest replica will start with a chi-square 

value of 30.  We wanted the hottest replica to have a high in-chain acceptance rate while 

having a not too flat distribution. The number of data points used in calculating chi-square 

values was 85. Then we ran Metropolis-Hastings for a replica with this temperature for 200                                                                                                                                                                                                                                                  

iterations.   

If acceptance rate was outside the range (0.6, 0.75), then we changed 𝑇𝐾  and ran M-H again 

for 200 iterations. We did this until the acceptance rate fell within the range (0.6, 0.75).  
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We made a linear grid with K temperatures and set a target swap rate of 0.4 for any two 

neighboring replicas.  

Then we run the parallel tempering in the following way:  

     1) every replica does an update of its parameter set 𝜃.     

     2) attempt swaps between replicas 1 and 2, 3 and 4, 5 and 6,… 

     3) attempt swaps between replicas 2 and 3, 4 and 5, 6 and 7,…     

     4) repeat steps 1), 2) and 3) 200 times 

For every pair of neighboring replicas (i, i+1) we calculated 

                                   ℚ𝑖,𝑖+1 =
1

𝑁𝑠𝑤𝑎𝑝
𝑖,𝑖+1 ∑ 𝑙𝑛(𝜌𝑖,𝑖+1

𝑙 )
𝑁𝑠𝑤𝑎𝑝
(𝑖,𝑖+1)

𝑙=1 , 

where 𝑁𝑠𝑤𝑎𝑝
(𝑖,𝑖+1)

 is the number of attempted swaps between replicas i and i+1 and 𝜌𝑖,𝑖+1
𝑙  is 

acceptance probability of the 𝑙𝑡ℎ attempt at swapping i and i+1. 

 If 𝑅𝑖,𝑖+1 = [√
ℚ𝑖,𝑖+1

ln (0.4)
] > 0, then we add to the grid 𝑅𝑖,𝑖+1temperatures, evenly spaced between 

𝑇𝑖 and 𝑇𝑖+1.  

We run this add-temperature process 3 times to make sure we have enough temperatures in the 

grid. Then we shifted the temperatures between 𝑇1 and 𝑇𝑘
 
as follows. 

1) Run parallel tempering with the new temperature set doing the above steps 1), 2) and 3) 350 

times. 
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2) For each temperature 𝑇𝑖 calculate the flow fraction 

       𝑓(𝑇𝑖) =
𝑛𝑢𝑝(𝑇𝑖)

𝑛𝑢𝑝(𝑇𝑖)+𝑛𝑑𝑜𝑤𝑛(𝑇𝑖)
 , 

where 𝑛𝑢𝑝(𝑇𝑖) and 𝑛𝑑𝑜𝑤𝑛(𝑇𝑖) is the total number of replicas that were drifting upward, 

respectively downward, when they visited 𝑇𝑖 . 

3) Linearly interpolate f  between temperatures 

4) Calculate g the inverse function of  f 

5) Change the temperature values from 𝑇𝑖 to 𝑇𝑖
𝑛𝑒𝑤 = 𝑔 (1 − 

𝑖−1

𝐾−1
). 

This process of shifting the intermediate temperatures was repeated 3 times. 

The shifting of temperatures was done to optimize the flow of replicas through the temperature 

grid. After that, we ran the parallel tempering algorithm for about 60,000 Monte Carlo updates, 

where by update we mean the steps 1), 2) and 3) described in the add-temperature process.   

 

2.3.9 REMOVING THE DETECTION NOISE FROM THE AVERAGE PERIODOGRAM  

A model to calculate the contribution of detector noise to the periodogram variance was 

derived under mild assumptions, and the detector noise, propagated to the periodogram in the 

supplement [13]. The assumptions in this calculation were that the total noise could be 

decomposed additively into stochastic intracellular noise and detector noise, that the stochastic 

intracellular noise component is independent of the detector noise component, and that the 



30 

 

detector noise in the Rhodamine B level measurements used in normalization of fluorescence 

measurements can be neglected [13].  The detector noise was independently quantified by 

replacing cells with fluorescent beads in the microfluidics experiments.  In this way a universal 

system of measurement of gene expression at the single cell level was developed and used here 

[13]. 

Suppose we observe the fluorescence values in an experiment with K cells and L 

equidistant observation times 𝑡𝑗 = (𝑗 − 1)
𝑇

𝐿
 . Here j=1,…,L and  T is the duration of the 

experiment. Denote the frequencies of interest by 𝑓𝑙 =
𝑙

𝑇
, l=0,…, [L/2]. Also assume the cells 

are treated with rhodamine B to reduce experimental noise.  

Then, the detector noise contribution to the periodogram variance at frequency 𝑓𝑙 is given by 

[13]: 

      (𝜎𝑙
𝑒)2 =

2𝜎𝜖
2

𝐾𝐿
[〈𝑄(𝑓𝑙)〉𝛾𝑄(𝑙) + 𝑅𝑒(〈𝑅(𝑓𝑙)〉𝛽𝑄(𝑙)

∗)] −
𝜎𝜖
4

𝐾𝐿2
[|𝛾𝑄(𝑙)|

2
+ |𝛽𝑄(𝑙)|

2
], 

where 〈𝑄(𝑓𝑙)〉  and 〈𝑅(𝑓𝑙)〉 are the population means of, respectively, average periodogram and 

average squared Fourier transform of the observed rhodamine B-normalized, detrended 

fluorescence time series.  The quantity 𝜎𝜖
2 is the variance of the fluorescence signal due to the 

detector noise averaged over all cells and time points.  This variance was determined 

experimentally by varying the incident light intensity and measuring the resultant variance in 

fluorescence of fluorescent beads replacing cells in a microfluidics experiment identical to that 

used for cells [13]. The quantities 𝛾𝑄(𝑙) and 𝛽𝑄(𝑙) are functions of the weights used in the                   



31 

 

moving-average detrending process [51], a standard for the literature. They do not depend of 

the observed fluorescence signals.   

To compare the simulated average periodogram values with observed average 

periodogram values we need to remove the bias due to detection error. The bias formula is 

given by 

                           𝑄𝑏𝑖𝑎𝑠(𝑓𝑙) =
𝜎𝜖
2

𝐿
𝛾𝑄(𝑙). 

When we try to fit the cell average periodogram, we compare 𝑄(𝑓𝑙) − 𝑄
𝑏𝑖𝑎𝑠(𝑓𝑙) to 

𝑄𝑚𝑜𝑑𝑒𝑙(𝑓𝑙), with 𝑄(𝑓𝑙) being the average periodogram over K cells calculated at frequency 𝑓𝑙 

and 𝑄𝑚𝑜𝑑𝑒𝑙(𝑓𝑙) being the average periodogram of the simulated time series calculated at 𝑓𝑙 . 

Unlike the analysis of the 868 single cell data set, the analysis of 1591 single cell data set with 

the bias correction does not normalize the periodograms.  The whole fitting process is done on 

an absolute scale without periodogram normalization. 

The ensemble to fit the average periodogram becomes 

          ℚ𝑏𝑖𝑎𝑠−𝑓𝑟𝑒𝑒(Θ) = Ω
−1∏

1

√2𝜋𝜎𝑓𝑙
2

𝑙 𝑒𝑥𝑝 (−
(𝑄(𝑓𝑙)−𝑄

𝑏𝑖𝑎𝑠(𝑓𝑙)−𝑄
𝑚𝑜𝑑𝑒𝑙(𝑓𝑙)

2

2𝜎𝑓𝑙
2 ) =

                                             𝑒𝑥𝑝 (−
𝜒2

2
 ) Ω−1∏

1

√2𝜋𝜎𝑓𝑙
2

𝑙                                                         (2)         

Here (𝜎𝑓𝑙
𝑐 )
2
= 𝜎𝑓𝑙

2 − (𝜎𝑓𝑙
𝑒 )
2
. The Central Limit Theorem is being invoked to obtain the 

approximate distribution of the average periodogram over > 1000 single cells needed to write 

down the ensemble in (2). See [13] for details. 
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2.4 RESULTS  

2.4.1 PARALLEL TEMPERING AS OPPOSED TO METROPOLIS-HASTINGS IS  

SUFFICIENT FOR FITTING A STOCHASTIC MODEL WITH MANY PARAMETERS  

As seen in Fig 2.2B the parallel tempering algorithms greatly improved the mixing of the 

chains and helped them escape local minima. These algorithms also converged much faster 

when compared to M-H algorithms. Their only downside is that they are slightly more 

computationally intensive and in general take longer to run when compared to the simple 

Metropolis-Hastings algorithms. However, parallelization can greatly reduce the additional 

time taken to run a parallel tempering algorithm when compared to Metropolis-Hastings 

algorithm. Better mixing and faster convergence more than compensate for the longer run time 

of each iteration. 

For the chains in Fig 2.2A the average computation time per iteration were 25.76, 3.62, 

0.33 and 2.41 seconds, respectively. For the four chains in Fig 2.2B the computation times per 

iteration were on average 41.98, 34.07, 30.11 and 16.89 seconds, respectively.  

We see that, when using Metropolis-Hastings algorithm, computation time, 

convergence and mixing varies greatly with the initial parameters in Fig 2.2A.  

Even though the computation time when using parallel tempering algorithm was on 

average longer compared to the time used by the Metropolis-Hastings algorithm, we see that 

the parallel-tempering chains quickly set to what is likely the region of the parameter space 

with lowest chi-squared value. Beginning with iteration 20,000 the chi-square value varied 
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between 82.87 and 125.5 for all chains. The mixing of these chains was excellent, with the 

swap acceptance rate between replicas at neighboring temperatures being larger than 0.5 for all 

parallel-tempering chains. The maximum number of replicas used in a parallel-tempering 

algorithm was 7. The maximum temperature was 10. 

The best model given by the parallel-tempering algorithm gave a good fit to the average 

periodogram of the cells as can be seen in Fig 2.3. The model captures the main frequencies in 

the data. It does not fit the data very well at high frequencies, but at high frequencies data are 

very noisy. 

 

2.4.2 THE FIT OF THE STOCHASTIC MODEL CAN BE IMPROVED SUBSTANTIALLY 

 BY INCREASING THE NUMBER OF CELLS AND SUBSTRACTING THE DETECTION  

NOISE FROM THE PERIODOGRAM  

 To reduce the noise in the periodogram in Fig 2.3 we increased the number of isolated 

cells to 1591 in a replicate experiment and removed the detection noise in the periodogram. See 

Table 2.  Without normalization of the periodogram the final 𝜒2 was 671.332 as opposed to 

12,024.9, when the bias correction was not made.  With 240 data points and 34 parameters, the 

chi-squared contribution per data point was 2.80, which is comparable to earlier work on a 

macroscopic scale [45]. 
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2.4.3 THERE ARE STRONG SIMILARITIES IN THE RATE CONSTANTS BETWEEN  

THE STOCHASTIC NETWORK AND DETERMINISTIC NETWORK  

The ensemble averages of parameters and their standard errors across the ensemble are 

reported in Table 2.2.  Some of the parameters are key to sustained oscillations in the 

deterministic model [28].  Some of these include  the activation (A) and deactivation rate 

(Abar), the decay rate of the stabilized wc-1 mRNA (D7)[28], the decay rate (D6) of the FRQ 

protein [52, 53]. 

The initial parameter values were computed by MCMC Metropolis Hastings Method [28] for a 

deterministic model, in which the protein WC-2 was treated as constant to good approximation. 

The best parameter values in this ensemble were then converted to the molecular number units 

of the stochastic network in Table 2.2 (column 3).  For example, in the stochastic network the 

initial numbers of molecules in each cell in Table 1 are given as opposed to concentrations used 

in the deterministic model.  This conversion is described in Materials and Methods.  Generally 

there is good agreement between the estimated rate constants estimated from the trajectories of 

1,591 cells (column 6) and the initial guess from the deterministic model (column 3), but no 

such agreement exists for the smaller experiment with only 868 single cell trajectories.  All 

discussion below is for the larger single cell experiment with 1,591 cells. In this discussion 

below wc-1 and wc-2 and their products are positive elements in the clock, while frq and its 

products are negative elements providing negative feedback to wc-1 and wc-2 and their 

products [35] in Fig 2.1. 
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Figure 2.3 Fitting of average periodogram of the cells (red) by average periodogram produced 

by best parallel-tempering model(blue). (A) in frequency domain (B) using period 

 

The decay rate of FRQ, D6, is thought to determine the period of the clock oscillator 

[52] and be involved in the phenomenon of temperature compensation in the clock.  As the 

FRQ decay rate D6 decreases, the period is expected to increase.  This coupling of period and 

FRQ may be more complicated[53].  The stochastic network’s decay rate (.194 +/- .002) is in 

quite good agreement with the macroscopic deterministic model (0.152). 

The decay rate of the stabilized wc-1 mRNA, D7, in Fig 2.1 is thought to be critical 

determinant of clock oscillations [28].  The theory predicted (and experiment confirmed in 

previous work [28] that there should be small decay rate or a long half-life at the macroscopic 

level.  The decay rate D7 in the stochastic network (2.131 +/- 0.090) appears somewhat higher 

than measured in the deterministic model (0.138).  One possible explanation is that the   
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constraint on decay rates for isolated cells that experience stochastic intracellular noise in phase 

may be relaxed relative to that in a deterministic model at the macroscopic level.  If the 

oscillations are actually supported by the noise, by way of some Stochastic Resonance 

mechanism [38], then this may impose less severe constraints on the decay rate D7.  

Another critical parameter for oscillations to occur in the deterministic model is the 

activation (A) and deactivation rates (Abar) of the oscillator frq gene by WCC in Fig 2.1.  

These activation and deactivation rates in the stochastic model (2.56E-10 +/- 7.31E-12 and 

1.590 +/- 0.036) tend to be qualitatively similar (6.06E-13 and .0.547), both being quite small. 

Another critical parameter for oscillations in the deterministic model is the rate of 

deactivation of WCC (the P reaction) by FRQ [28].  The deactivation rate (P) in the stochastic 

model ( 2.7E-9 +/- 4.8E-11) is similar to that estimated at the macroscopic scale (3.12E-11), 

both being small.    

The new MCMC method for specifying the parameters from periodogram tends to 

produce standard errors across the ensemble that are one to two orders of magnitude smaller 

than the ensemble means.  The parameter values are quite tightly specified by the new 

estimation method and the use of at least 1,500 cells. 

It is interesting to see what this model actually looks like.  Various views of a single 

Gillespie trajectory are shown for one of the best fitting models (Fig 2.4). In panel A is shown 

the molecular counts of the positive element WCC.  The counts are correlated with the 

activation of the FRQ gene in panel B, but the correlation is not perfect. Switching on the frq 

gene is a stochastic event in this model.  The result of switching on the frq gene is 
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transcriptional bursts in its mRNA in panel C. There are at least 9 such bursts in Panel C over a 

240 h interval.  The width of these bursts as shown is wider than the time that a frq gene is 

active in a cell. In turn there are resulting even broader peaks in the FRQ protein production in 

panel D.  The noisiest trajectory is what we actually see, CCG-2 in panel E.  These views of a 

Gillespie trajectory give us a picture of the noise in a single cell under one fitted model in the 

model ensemble. 

 

2.4.4 THE STOCHASTIC INTRACELLULAR NOISE LEVEL CAN BE  

EXPERIMENTALLY DETERMINED AS A PARAMETER IN THE MODEL  

The mRNA to DNA ratios and protein to DNA ratios in conidia have been previously 

determined to be ~1:18:50[54]. Our ratios from Table 2.1 tend to be higher as 1:129:412, 

although the protein/RNA ratio is similar to previous reports. Here we report a higher 

amplification in the DNA -> RNA step of the Central Dogma.  These ratios were then used to 

set the noise in the stochastic network (Fig 2.5).  The network was subdivided into independent 

blocks that were only linked by catalytic reactions.  Then the ratios in Table 2.1 were used to 

convert concentrations in the deterministic model into molecular numbers within the cell (as 

described in Materials and Methods for each independent block) as illustrated in Table 2.2. 

The ratios of RNA to DNA and protein to DNA set the level of noise in the Gillespie 

trajectory of CCG-2.  As the ratios get smaller the noise increases in the expression of CCG-2 

in the Gillespie model trajectories for CCG-2 protein. The level of stochastic intracellular noise 

is then set by the amplification at each step in the Central Dogma. 
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Having experimentally determined these ratios, it is natural to ask how these ratios 

affect the goodness of fit of the model (Fig 2.6).  We varied the ratios about the experimental 

values.  A slightly better fit could be obtained by allowing the protein/DNA ratio to be slightly 

higher.  The values of the chi-squared statistics across an ensemble would suggest that the fit of 

the model ensemble if fairly robust to variation in these ratios.  

The robustness of the ensemble across different RNA/DNA and protein/DNA ratios can 

be understood by the fact that our stochastic models can be well approximated by a chemical 

Langevin equation, which in turn can be approximated by the ODE equations of the 

deterministic model.  The chemical Langevin equation (CLE)[10, 55] is a stochastic equation 

that describes the rate of change of the state vector of molecular numbers, X, as follows:  

                           
𝑑𝑋(𝑡)

𝑑𝑡
= ∑ 𝑣𝑗𝑎𝑗(𝑋(𝑡))

𝑀
𝑗=1 + ∑ 𝑣𝑗

𝑀
𝑗=1 √𝑎𝑗(𝑋(𝑡))Γ𝑗(𝑡)     (3) 

The molecular numbers comprised in X are treated as continuous random variables. The 

first term on the right-hand side is just the rate function of the corresponding deterministic 

model, and the second term represents the noise due to the stochasticity of the reaction events. 

The 𝑣𝑗  is the vector of changes in molecular numbers produced by the firing of reaction 𝑅𝑗 and 

Γ𝑗’s are statistically independent Gaussian white-noise processes.  The crucial point here is that 

the strength of the noise term in the CLE increases relative to the deterministic rate term in the 

CLE, as the molecule numbers for RNA and protein decrease.  

The change of RNA/DNA and protein/DNA ratios in Fig 2.5 was done by rescaling the 

RNA and protein numbers in such a way that the corresponding deterministic model remained 
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unchanged and only the noise term in the CLE was affected. So, if the deterministic term 

dominates the stochastic term, the noise level will not matter, hence the robustness. 

 

2.4.5 THE HILBERT PHASE VARIATION BETWEEN CELLS PROVIDES AN  

INDEPENDENT TEST OF THE GOODNESS OF FIT OF THE MODEL  

There are three quantities that characterize the periodic behavior of single cells, their period, 

amplitude, and phase [13]. Two of these quantities, period and amplitude, are captured in the 

periodogram used for fitting the model ensemble (Fig 2.3). The phase is functionally 

independent of the periodogram and hence independent of the first two quantities [13]; 

therefore, the phase can be used as a test of the adequacy of the model.  The phase is not used 

in the fitting (Fig 2.3). The Hilbert phase can be calculated for each single cell trajectory and 

each Gillespie trajectory and measures the amount of cycles completed in a fixed period of 

time (and hence is a function of time). So, for example, 4 tires on a car would complete the 

same number of cycles in a fixed period of time and be in phase.  This phase measure does vary 

with time and is a well-known measure of phase [56].                                                               

The histogram of Hilbert phases for single cells and Gillespie trajectories from the model 

ensemble are compared as a measure of goodness of fit (Fig 2.7).  There are two sources of 

variation in the Gillespie trajectories, the random variation in phase between Gillespie 

trajectories of one model and the variation in phase between models in the ensemble of fitted 

models. The histogram of Hilbert phases in Fig 2.7 reflects both sources of variation. For each 

model, 1024 Gillespie trajectories were simulated, and each Gillespie trajectory has a Hilbert 
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phase.  In addition, the process was then repeated for over 1000 models in the fitted ensemble 

(Fig 2.3) to generate all the values for the model histogram (Fig 2.7).   

We see that the histogram for the Gillespie trajectories for over a thousand models in 

the fitted ensemble, covers the histogram measured on single cells over an 85-hour window.  

The difference between the two histograms is significant by a Kolmogorov-Smirnov (KS) 

nonparametric test.  We carried out a KS-test of the difference of the two histograms (P < 

0.0001) with the maximum difference in cumulative histograms being 0.1747 [57]. 

There are three possible reasons for the discrepancy between phase predicted and phase 

observed.  The systems is experiencing Stochastic Resonance [38-40].   A second possible 

reason for the discrepancy is cell-to-cell synchronization by quorum sensing.  It is unlikely that 

a quorum sensing mechanism is at work because the cells are physically isolated in droplets in 

Fig 2.7 [13]. A third reason could be that the Hilbert phase results are dominated by noise 

fluctuations.  

  

2.4.6 IS THERE AN INTERMEDIATE OPTIMUM IN THE OSCILLATORY SIGNAL AS A 

FUNCTION OF THE STOCHASTIC INTRACELLULAR NOISE?  

One possible explanation for the results on goodness of fit may be synchronization 

through the Stochastic Resonance mechanism acting on isolated single cells.  Under this 

hypothesis there is a non-monotonic relation between peak height (i.e., signal strength) in the 

periodogram (Fig 2.3) and the estimated stochastic intracellular noise[38].  Here we examine                         

how the periodogram varies, as the noise is varied (Fig 2.8).  
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Figure 2.4 Multiple views of one stochastic trajectory for one of the best fitting models from 

the 1591 cell data set.  The Gillespie trajectory shown in part is derived from a best fitting 

model in Table 2 after bias-correction.  The chi-squared statistic for this fitted model was 

671.332.  Time 0 actually corresponds to 20 h, and the last time point, to 240 h. (A) Trajectory 

of the WCC count. (B) Trajectory of the active frq gene count f1; the gene is either on or off; 

(C) Trajectory of the frq mRNA count fr. (D) Trajectory of the FRQ protein count. (E) 

Trajectory of the CCG-2 protein count. 

 

 

 

 

Figure 2.5 Stochastic noise in CCG-2 as a function varies systematically with hypothesized 

ratios of RNA/DNA and Protein/DNA ratios within a single cell.  The total stochastic noise   

averaged over frequencies (f) in CCG-2 expression is computed from bootstrapping the 1024 

Gillespie trajectories.  The red dot denotes the experimentally determined ratios (see Table 2.1) 

and corresponds to a RNA/DNA and protein/DNA ratio of 128.7 and 412, respectively. The 

model selected was one with minimum chi-squared statistic based on the likelihood in equation 

(1) for 868 single cells. 
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Figure 2.6 The fit of ensemble of models (χ2) is robust to variation in the RNA/DNA and 

protein/DNA ratios. Each ensemble had at least at least 1,400 models derived from an 

accumulation run.  The equilibration runs were done with parallel tempering as described in 

Materials and Methods. A smooth interpolation is provided for each histogram. The ensembles 

were derived from Eqn (1) for 868 single cells with no bias correction. 

 

One of the clearest examples of the effects of stochastic resonance is in a simple two-

dimensional system, in which the polar coordinates (r,𝜃) evolve according to the following 

dynamical system[39]:      

𝑟̇ = 𝑟(1 − 𝑟2)  +  𝜖1(𝑡

 𝜃̇ = 𝑏 − 𝑟2 cos(2𝜃) + 𝜖2(𝑡) 

where the 𝜖-terms are the noise terms. There are two fixed points to this system, and a limit 

cycle in the deterministic system without the 𝜖-terms exists for b > 1 [39].  What is interesting 

that in the presence of sufficient noise and b < 1, there is directional flow between the fixed 

points and hence oscillations.  If there is too little noise, the dynamical system cannot escape 

from the stable fixed points and does not oscillate; likewise, too much noise will also wipe out 

the oscillations. This model illustrates the hypothesis of stochastic resonance. 

Consistent with the Stochastic Resonance hypothesis, too little noise may not allow our 

dynamical system in Fig 2.1 to escape stable fixed points; likewise, too much noise may not 

allow the dynamical system in Fig 2.1 to settle into a flow between stable fixed points. Yet, if 

there is the right level of noise, an oscillatory signal may emerge in the periodogram. Here we 

test this hypothesis in the N. crassa clock using the single cell data. 
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Figure 2.7 Goodness of fit for the model ensemble is tested with the Hilbert Phase for 868 

single cells (blue) and Gillespie trajectories (red) under the model with smallest chi-squared 

statistic in the fitted ensemble (Figure 2.3).  The computation of the Hilbert for each trajectory 

is described previously over a 30  to 115 hour window [13]. The model histogram is that of the 

Hilbert phases for 1024 Gillespie trajectories on each of > 1000 models in the best fitting 

model ensemble (Figure 2.3). 

 

What we see in Fig 2.8 is exactly what we would predict under the Stochastic 

Resonance hypothesis.  As the noise is increased above “normal”, the peak in the periodogram 

is diminished, and the oscillatory signal is diminished.  If the noise is decreased sufficiently 

from “normal”, the peak in the periodogram is also diminished, and the oscillatory signal is 

diminished, consistent with the trapping of the real dynamical system in stable fixed points.  
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Only at an intermediate level of noise do we see oscillations in single cells in Fig 2.8 in the 

periodogram. 

 

 

Figure 2.8 There is a non-monotonic relation between the oscillatory signal strength in the 

normalized periodogram for the CCG protein species and the stochastic intracellular noise.  

The red curve is for the best fitting model (Figure 2.3B), using the observed RNA/DNA and 

protein/DNA ratios of 128.7 and 412, respectively.  The blue, green and yellow curves have a 

bigger stochastic intracellular noise than the best fitting model, by shrinking the protein/DNA 

and RNA/DNA ratios relative to the observed values.  The black curve has a smaller stochastic 

intracellular noise by increasing the protein/DNA and RNA/DNA ratios by a factor of 8.  
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 As a final note, in Fig 2.8 the protein/DNA and RNA/DNA ratios were varied to cause a 

change in the stochastic intracellular noise (Fig 2.5), while the reaction propensities were left 

constant.  Some might argue from equation (3) that the lead deterministic term in the CLE 

should be kept constant while varying the stochastic intracellular noise.  In this way the 

limiting deterministic dynamics would be kept constant while the noise is varied.  In comparing 

models with the same deterministic dynamics, it was necessary to vary the propensities so that 

the lead term in the CLE did not change using the rescaling method in the Materials and 

Methods.   The result of this experiment was the same outcome as in Fig 2.8 with the only 

change that a much higher RNA/DNA and protein/DNA ratio (~3000) was needed to see the 

non-monotonic response to stochastic intracellular noise in Fig 2.8. 

 

2.5 DISCUSSION  

In order to describe the stochastic behavior of single cell oscillators, a variety of 

methodological challenges needed to be surmounted.  First and foremost, a scalable fitting  

method that would work with thousands of trajectories on single cells was needed.  Existing 

methods do not operate on this scale.  To overcome this challenge a fast, scalable ensemble 

method for stochastic networks was developed using the periodogram or power spectrum of an 

average model trajectory to be compared with the average periodogram over single cells.  The 

method is scalable to thousands or tens of thousands of cells on GPUs. 

One of the limitations of this approach is that normal Metropolis-Hastings ensemble 

methods [28] are not adequate for stochastic networks.  Parallel tempering methods are shown 
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to work well on the stochastic networks examined here (Fig 2.2). As more complicated 

alternatives to the model in Fig 2.1 are considered, surmounting the rate limiting step of 

generating a Gillespie trajectory may be achieved by other means than through GPUs alone.  A 

promising avenue is generating approximations to the Gillespie trajectory with Quasi Steady-

State Approximations (QSSA) to the full stochastic model considered here [58].  The right 

steady state approximation can help the identifiability of fitting methods for stochastic 

networks even in simple networks [59]. 

 A second challenge in the fitting process is that there are two sources of error in single 

cell trajectories, the stochastic intracellular noise and the experimental error [13].  The latter 

introduces biases into the fitting process.  We developed a statistical methodology to remove 

the experimental error from the fitting process to the periodogram of the model ensemble and 

thereby achieved a better specification of the model.  This new procedure for removing the bias 

of the experimental error from the periodogram is presented and utilized. 

 Another challenge of stochastic network identification is characterizing the size of the 

cell, which sets the level of stochastic intracellular noise, a parameter missing in deterministic 

models[44].  We developed an empirical approach to identifying the cell size for a stochastic 

network from the protein/DNA and RNA/DNA ratios for the system under study.  We showed 

that the fitted model was quite robust to variation in these ratios (Fig 2.6).  A final challenge is 

developing protocols to make single cell measurements [60]. 

In the study of stochastic periodic phenomena we need both ways to fit such models 

with large amounts of single cell data as well as ways to test the success of these models.               
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Three statistics provide useful summaries of periodic stochastic networks: period, amplitude, 

and phase of single cell trajectories. Fortuitously the periodogram is functionally independent 

of the phase of single cell trajectories [13].  A goodness of fit statistic was then developed 

using the phase, which included variation in phase across trajectories and the model ensemble. 

We then applied these new methodologies to understand the oscillatory behavior of 

single cells in N. crassa.  We found that parallel tempering was quite successful in identifying a 

stochastic network to describe the oscillator in single cells.  In many cases the rate constants of 

macroscopic deterministic models based on millions of cells were similar to those in 

microscopic stochastic models of single cells (Table 2).  Yet, there were also some key 

differences.  For example, in macroscopic models the half-life of the wc-1 mRNA was 

measured to be quite long and found to be a critical feature in maintaining oscillations [28].  

Yet at the single cell level the half-life was estimated to be much shorter.  One possible 

explanation may be that single cells have other mechanisms to produce oscillations than those 

that operate at the macroscopic scale.  For example, single cells experience stochastic 

intracellular noise that can move cells from one stationary state to another [39], and this 

behavior may generate oscillations. This phenomenon depends on not having too much or too 

little stochastic intracellular noise.  We show this phenomenon of Stochastic Resonance [38, 

61] may play a role in seeing clock-like behavior in single cells (Fig 2.8).  The kinetics of 

single cells may operate under a set of more relaxed rules for oscillation than those that apply 

to millions or tens of millions of cells. 

Other hypotheses for explaining single cell oscillations need testing [61], such as 

quorum sensing [62] or cell-cycle gated circadian rhythms [63].  Cell-cycle gating was 
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controlled by choosing a medium inhibiting cell division [13]. The quorum sensing hypothesis 

would require communication between cells.  Yet, the cells examined here were isolated in 

droplets. In future work cells will be allowed to share the same droplet, and the associations 

between cells within droplets provide additional statistics to supplement the periodogram to 

distinguish between quorum sensing and stochastic resonance. Here we have created both an 

experimental and methodological arrangement to study the physical theory of Stochastic 

Resonance in living cells.  For the first time, we have a window on a new set of dynamics at the 

single cell level that play by a different set of rules potentially than ensembles of millions of 

cells. 

 

Table 2.1 The protein/RNA/DNA ratios used for specifying the scale parameters in a stochastic 

network were measured and reported below.  For each of 13 evenly spaced time points over  48 

hours, a sample was taken.  A commercial kit was used to simultaneously extract DNA, RNA, 

and protein from each sample.  The amounts of DNA, RNA, and Protein were then measured.  

To convert these measurements to nanomoles the average molecular weight of a protein and 

RNA was computed.  The average molecular weight of an amino acid is 128.0452.  Hence the 

average molecular weight of a protein in N. crassa was taken as 481*128.0452.  The average 

molecular weight of an RNA was taken as 

1673*(propA*329.2+propC*305.2+propG*345.2+propU*306.2)+159, where the proportion of 

A (propA) etc was taken from[46] .  

Time 

DNA 

ng/ 𝜇l 

RNA

ng/𝜇l  

Protein 

ng/ 𝜇l 

DNA 

(nanomoles) 

RNA(nanomole

s) 

Prot 

(nanomoles) RNA:DNA Prot:DNA Prot:RNA 

      0 8.8 1063 422 1.70495E-05 0.001974891 0.006851792 115.8330089 401.8772813 3.469453874 

4 6.5 1511 248 1.25934E-05 0.002807206 0.004026645 222.9116944 319.7437035 1.434396273 

8 7.5 1036 292 1.45308E-05 0.001924729 0.00474105 132.4586234 326.2761018 2.463230353 

12 7.6 1062 550 1.47245E-05 0.001973033 0.00893006 133.9962578 606.4748197 4.526057888 

16 15 1092 347 2.90616E-05 0.002028768 0.005634056 69.80927451 193.8661084 2.777082412 
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20 4.4 1051 261 8.52473E-06 0.001952596 0.00423772 229.0507852 497.1088646 2.170299762 

24 7.2 1084 683 1.39496E-05 0.002013905 0.011089511 144.3705234 794.9720944 5.506470958 

28 18.2 1216 220 3.52614E-05 0.002259141 0.003572024 64.06840795 101.3012886 1.581142591 

32 5.9 1170 387 1.14309E-05 0.00217368 0.006283515 190.1584354 549.6960677 2.890726707 

36 13.5 1311 343 2.61554E-05 0.002435636 0.00556911 93.12165128 212.9237118 2.286511341 

40 14 1161 369 2.71241E-05 0.002156959 0.005991259 79.5217501 220.8828551 2.777640769 

44 13.8 1159 697 2.67367E-05 0.002153244 0.011316822 80.53526552 423.2698834 5.255708547 

48 7.4 904 626 1.4337E-05 0.001679493 0.010164032 117.1435702 708.9347917 6.051845528 

Ave.        128.7      412  

 

 

Table 2.2 Ensemble means and standard errors indicate that the parameters in stochastic 

network for single cells are tightly specified by the new fitting method.   

Parameter 

Initial_Parameter 

value from MCMC 

Deterministic model 

ensemble (Yu et al., 

2007) 

Initial Parameter 

values from 

Deterministic model 

ensemble (column 

2) re-scaled 

to_molecular 

number_units of 

stochastic network 

(column 3) 

Mean parameter 

values from 

model ensemble 

computed by 

Parallel 

tempering_ 

Standard error 

(SE) of 

parameter 

value across 

ensemble 

computed by 

parallel 

tempering 

Mean 

parameter 

values from 

model 

ensemble 

computed by 

Parallel 

tempering_ 

Standard 

error (SE) of 

parameter 

value across 

ensemble 

computed by 

parallel 

tempering 

Number of 

cells - - 868 868 

1591 1591 

u_r0 3.99924 113 5015.225951 39.46834951 2156.705728 68.14603254 

u_r1 0.442441 18 5427.14616 38.81394987 22.46137677 0.872953544 

u_p 4.24E-07 459 5052.398397 39.86454551 2144.149238 68.74768856 

f_0 0.356365 1 0.498322148 0.006827531 0.465055176 0.01143672 
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f_1 0.0824576 0 0.501677852 0.006827531 0.534944824 0.01143672 

f_r 4.90E-06 31 5099.803691 39.65320564 59.15869679 2.637452857 

f_p 3.0804 345 5661.033184 37.79536413 2534.336311 77.72114325 

w 9.24126 101 5070.154735 39.25742344 55.40042039 1.674320488 

g_0 0.0066195 1 0.498508576 0.006827539 0.71623752 0.010337149 

g_1 2.59E-06 0 0.501491424 0.006827539 0.28376248 0.010337149 

g_r 1.17E-06 26 3086.66182 44.02007694 35.67840252 1.030258983 

g_p 1.37E-05 102 5272.938106 41.68301079 59.19075145 4.920903774 

A 0.000658482 6.06E-13 1.84E-10 3.59E-12 2.56E-10 7.31E-12 

Abar 0.546986 0.546986 50.03130674 0.39493562 1.589532708 0.035661845 

S1 0.061594783 83.70771546 75.50835675 0.195849227 80.12566921 0.302471515 

S3 0.00146575 3.569116497 10.79752752 0.13705406 0.400641074 0.036565894 

S4 2.2396 5453.449297 8229.792075 51.85745823 8316.020583 100.2852188 

D1 0.723678 0.723678 11.6411168 0.125746972 1.294999006 0.030289616 

D3 0.299703 0.299703 13.54885771 0.126263685 4.382612039 0.181101578 

C1 0.0428595 4.81E-05 0.002859534 2.05E-05 0.000932789 2.47E-05 

L1 31.7758 4.244678204 11.73643559 0.073999739 4.777735371 0.106626479 

L3 3.02387 0.485087349 1.339312652 0.010385343 0.665600817 0.011127036 

D4 0.00323262 0.00323262 0.077027847 0.001450665 0.08474029 0.004700587 

D6 0.15183 0.15183 4.114778877 0.068424489 0.193685712 0.002236097 

D7 0.138387 0.138387 3.008652124 0.046190832 2.130911791 0.090030385 

D8 0.00248668 0.00248668 0.159664546 0.00266928 0.007744621 0.000182717 

C2 0.162687246 0.162687246 6.323785664 0.069435513 1.515554675 0.077548547 

P 19.5648 3.12E-11 1.15E-09 1.88E-11 2.72E-09 4.83E-11 

Ac 4.06813 7.82E-09 2.68E-07 4.65E-09 1.86E-08 2.55E-09 

Bc 2.52197 2.52197 66.30689649 0.666502458 2.581096866 0.040197442 

Sc 1.01E-06 73.80414613 1097.22398 6.307615581 61.51499414 1.109629713 

Lc 1.15E-08 2.231095711 3.743285409 0.038176388 1.61524392 0.017335914 

Dcr 0.219758 0.219758 0.625739758 0.02113632 0.150810052 0.00291715 

Dcp 0.696903 0.696903 1.982857699 0.007835124 0.54063952 0.006141903 
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ABSTRACT 

Four inter-related measures of phase are described to study the phase synchronization of 

cellular oscillators, and computation of these measures is described and illustrated on single 

cell fluorescence data from the model filamentous fungus, Neurospora crassa.  One of these 

four measures is the phase shift 𝜙 in a sinusoid of the form x(t) = 𝐴 cos(𝜔𝑡 + 𝜙), where t is 

time.  The other measures arise by creating a replica of the periodic process x(t) called the 

Hilbert transform 𝑥̃(𝑡), which is 90 degrees out of phase with the original process x(t).  The 

second phase measure is the phase angle 𝐹𝐻(𝑡) between the replica 𝑥̃(𝑡) and x(t), taking values 

between -𝜋 and 𝜋. At extreme values the Hilbert phase is discontinuous, and a continuous form 

𝐹𝐶(𝑡) of the Hilbert Phase is used, measuring time on the nonnegative real axis (t).  The 

continuous Hilbert Phase 𝐹𝐶(𝑡) is used to define the phase 𝑀𝐶(𝑡1, 𝑡0) for an experiment 

beginning at time 𝑡0 and ending at time 𝑡1.  Because phase differences at time 𝑡0 are often of 

ancillary interest, the Hilbert Phase 𝐹𝐶(𝑡0) is subtracted from 𝐹𝐶(𝑡1).  This difference is 

divided by 2𝜋 to obtain the phase 𝑀𝐶(𝑡1, 𝑡0) in cycles.  Both the Hilbert Phase 𝐹𝐶(𝑡) and the 

phase 𝑀𝐶(𝑡1, 𝑡0)  are functions of time and useful in studying when oscillators phase-

synchronize in time in signal processing and circadian rhythms in particular.  The phase of 

cellular clocks is fundamentally different from circadian clocks at the macroscopic scale 

because there is an hourly cycle superimposed on the circadian cycle.   
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3.1 INTRODUCTION  

Recently single cells have been shown to have circadian oscillators using fluorescent markers 

in clock-related genes [1]. These kinds of fluorescent and luminescent measurements on single 

cells have been made in a variety of clock systems recently [2-6]. There are three basic 

properties of oscillators in single cells: the amplitude, period, and phase of each cell’s 

oscillations.  The most elusive of these quantities is the phase.  How the phase behaves can 

provide information on how circadian oscillators synchronize in whole tissues or organisms 

[7].  Oscillators in single cells each appear to have substantial variation in phase between cells 

[1], but at the macroscopic level of 107 cells the ensemble of circadian oscillators appear 

synchronized when assayed in liquid culture or in race tubes, for example [8].  How does this 

phase synchronization arise?  In order to address this question, there is a need for a clear notion 

of phase and how to calculate the phase of a cellular oscillator [9].  Whether or not phase 

synchronization happens may have profound consequences for our health and successful aging 

[10]. 

One particular notion of phase relied on heavily in this work is the Hilbert Phase, which 

was originally developed for signal processing applications [11]. It has come to the fore 

recently in the analysis of single cell data in Mus musculus [12] and N. crassa [1]. There has 

also been increasing interest in its use for identifying phase response curves describing 

synchronization to light and other entrainment signals [13,14]. 

Here we develop four inter-related notions of phase of a cellular oscillator, the phase shift, 

the Hilbert Phase, the continuous Hilbert Phase, and phase in cycles. We use single cell 



64 

 

oscillators in the model system, Neurospora crassa, to illustrate each of these four interrelated 

measures of phase and their function in describing “phase”.  We use these phase measures to 

examine: (1) phase variation in single cells; (2) the effect of the social environment of cellular 

oscillators on phase; (3) phase as a function of time as when there is synchronization of 

oscillators. Each of these topics illustrate how all four notions of phase are measured in concert 

to provide insights into cellular oscillators. 

 

3.2 MEASURES OF PHASE  

 A fluorescent or luminescent measurement x(t) at each time point t is made on the 

fluorescence or luminescence of a clock-related gene in single cells. Typically these 

measurements are taken every half hour over ten, 24 hour days, in the model system, N. crassa, 

used to illustrate the phase calculations(1).  The simplest model for these measurements is a 

sinusoid of the form 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 +  𝜙), where A is the amplitude of the signal, 𝜔, the 

frequency of the oscillation, and 𝜙, the phase shift of the process.  This is sometimes referred 

to as the hidden periodicity model [15].  If the phase 𝜙 were constant over time, then the phase 

shift would capture all of the phase information about each cell and could be extrapolated 

safely to later times after the zero-time point to examine phase relations between cells.  The 

challenge is when the phase shift is not constant in time, as when cells synchronize their phases 

in time. 

Let us suppose we could create a replica 𝑥̃(𝑡) of the original process x(t) that is 90 

degrees out of phase with the original process.  For example, if 𝑥(𝑡) 𝑤𝑒𝑟𝑒 cos (ωt), then the 
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replica 𝑥̃(𝑡) = sin (ωt) would be 90 degrees out of phase (Fig. 3.1A).  We can think of each 

process as a mark on a spinning tire on a car; one tire is marked, and another tire is marked  

 

 

Figure 3.1 Hilbert Phase. (A) The original process x(t) in red is replicated by a Hilbert 

transform to x ̃(t) in blue. (B) Creating the replica is analogous to putting two marks on two 

different tires, which are at 12:00 and 3:00 o’clock to start. (C) The angle 𝐹𝐶(𝑡) between the 

two marks is the Hilbert Phase.  One mark corresponds to the original process x(t) in red. The 

second replica mark corresponds to the Hilbert transform 𝑥̃(𝑡) in blue.  (D) The pair 

(𝑥(𝑡), 𝑥̃(𝑡)) defines a number in the complex plane, and as the tires rotate, the pair form a 

spiral over the complex plane known as the analytic signal.  
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with its mark at 90 degrees from the other mark at time t = 0 (Fig 3.1B).  The two marks, x(t) 

and 𝑥̃(𝑡), are followed over time.  Then we could observe how the original process and the 

replica change position with respect to each other in time.  This is usually done by way of an 

angular measurement between the marks on each tire.  In other words, we can watch the two 

marks on two tires change position (i.e., angle) with respect to each other in time.  The surprise 

is that under very general conditions (described in Materials and Methods) such a replica 

𝑥̃(𝑡) can be created and is called the Hilbert Transform of x(t) [11]. 

 The Hilbert Phase 𝐹𝐻(𝑡) is then defined as the phase angle between the original process 

x(t) and the replica 𝑥̃(𝑡) (Fig 3.1C) [16]: 

    𝐹𝐻(𝑡) =  𝑡𝑎𝑛−1
𝑥̃(𝑡)

x(t)
. 

This phase angle (i.e., between the two marks on two tires) can change over time along 

with the original fluorescent series x(t) and be computed for the fluorescent series on each cell 

by a Fast Fourier Transform [17].  The range of values for the Hilbert Phase by convention are 

usually taken to be from −𝜋   to 𝜋.  If the process were 𝑥(𝑡) = Acos(𝜔𝑡 + 𝜙), then we could 

calculate the Hilbert Phase: 

 𝐹𝐻(𝑡) =  𝑡𝑎𝑛−1
𝑥̃(𝑡)

x(t)
= 𝑡𝑎𝑛−1

Asin(𝜔𝑡+𝜙)

Acos(𝜔𝑡+𝜙)
= 𝑡𝑎𝑛−1 tan(𝜔𝑡 + 𝜙) =  𝜔𝑡 + 𝜙  

In this case of a sinusoidal process the Hilbert Phase has a simple linear relation with 

time with the y-intercept being the phase shift 𝜙 and with the slope being the frequency.  

To visualize the relation of the process x(t) and its replica 𝑥̃(𝑡) this pair of values is 

used to form a complex number of the form (𝑥(𝑡), 𝑥̃(𝑡)), where x(t) is the real part and 𝑥̃(𝑡) is  
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the imaginary part in the complex plane at time t (Fig. 3.1C). This pair as a function of time is 

sometimes referred to as the analytic signal(16).  As time t advances, the curve (𝑥(𝑡), 𝑥̃(𝑡)) 

traces out a cycle in the complex plane about its origin (Fig. 3.1D).  As the curve approaches 

−𝜋   or 𝜋, it tends to have discontinuities (Fig. 3.2). To stitch together these discontinuities, the 

Hilbert phase 𝐹𝐻(𝑡) is continuized as described in Materials and Methods and shown in Fig. 

3.2 (in red). The continuous Hilbert phase is denoted by 𝐹𝐶(𝑡).  A plot of this average 

continuous Hilbert phase with an average (over cells) of the original process is shown in the 

middle panel (Fig. 3.2 in red). With time in the z-direction and the complex plane extending in 

the x- and y directions, the curve (𝑥(𝑡), 𝐹𝐶(𝑡)) appears as a spiral (or tornado) in time (see Fig. 

3.1D).   

 

3.3 MATERIALS AND METHODS      

3.3.1 DATA   

Fluorescent measurements were made on cells with a mCherry recorder gene attached to a 

clock-controlled gene-2 (ccg-2) promoter in strain MFNC9 of N. crassa(18). Much of the data 

were published in an excel spread sheet for ~1,591 isolated cells, each measured every half 

hour over ten days [7].  Cells are across columns; time is down rows. The fluorescent data were 

Rhodamine B normalized to control for uncontrolled periodic and aperiodic factors and 

detrended [1]. Subsequently, improved cell tracking slightly increase the data set to 1,644 cells.  

All data were loaded into a MATLAB workspace publicly available via GitHub at 

https://github.com/XiaoQiu2019/Matlab-code-for-phase-paper 

https://github.com/XiaoQiu2019/Matlab-code-for-phase-paper
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3.3.2 CALCULATING PHASE  

The calculation of phase is presented [1]. The calculation of phase is detailed again. First a 

replica 𝑥̃(𝑡) (of the process x(t)) is created using the Hilbert Transform:  

   𝑥̃(𝑡) = 𝑃𝑉
1

2𝜋
∫

𝑥(𝑡)

𝑡−𝜏
𝑑𝜏

∞

−∞
, 

where the integral is calculated in the principal value sense [19]. This replica 𝑥̃(𝑡) is 90 degrees 

out of phase with the original process; moreover, it is uniquely specified by the process when it 

exists. In that the replica 𝑥̃(𝑡) is purely imaginary in Fig. 3.1C and completely out of phase 

with x(t), it can be derived from the original x(t) using the convolution theorem: 

    𝑥̃(𝑡) =  −𝑖𝐹𝑇−1(𝐹𝑇(𝑥(𝑡)) , 

where FT denotes the Fourier Transform, 𝐹𝑇−1 is the inverse Fourier Transform and 𝑖 = √−1 .  

This relation is how the replica is computed with the commands fft and ifft in MATLAB [17]. 

The Hilbert Phase is the phase angle between the original process x(t) and the replica 𝑥̃(𝑡): 

    𝐹𝐻(𝑡) =  𝑡𝑎𝑛−1
𝑥̃(𝑡)

x(t)
  

As an example, if the process x(t) were Acos(𝜔𝑡 + 𝜙), then the Hilbert transform 

would be Asin(𝜔𝑡 + 𝜙). It follows that the Hilbert Phase reduces to 𝐹𝐻(𝑡) =  𝜔𝑡 +  𝜙.  As the 

Hilbert Phase passes near −𝜋 or 𝜋, there are usually discontinuities in the Hilbert Phase.  To 

surmount this problem the Hilbert Phase was continuized. The continuous Hilbert Phase is 

defined recursively by: 

    𝐹𝐶(𝑡 + 1) =  𝐹𝐶(𝑡) + 𝑚𝐶(𝑡)2𝜋, 
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where time t is an integer value indicating the number of elapsed half hours in each ~ten-day 

experiment (containing ~480 half hour time points). The multiple 𝑚𝐶(𝑡) was chosen to 

minimize the following differences with respect to 𝑚𝐶(𝑡): 

    𝐷𝑓𝑚 = |𝐹
𝐻(𝑡 + 1) − 𝐹𝐻(𝑡) + 2𝜋𝑚𝐶(𝑡)| 

This was done by the MATLAB code accessible in GitHub. 

With the continuous Hilbert phase 𝐹𝐶(𝑡) in hand, then the phase MC(t1,t0) in cycles can 

be calculated: 

    𝑀𝐶(𝑡1, 𝑡0) =  
[𝐹𝐶(𝑡1)−𝐹

𝐶(𝑡0)]

2𝜋
, 

where the divisor of 2𝜋 insures that the phase 𝑀𝐶(𝑡1, 𝑡0) counts cycles completed by the 

continuous phase angle 𝐹𝐶(𝑡) and where the subtracted quantity acts like a generalized phase 

shift 𝜙 to remove the phase differences at the beginning of an experiment.  The phase 

𝑀𝐶(𝑡1, 𝑡0)  in cycles varies with the time interval of the experiment.  Allowing the phase to 

vary with time t1
 permits the examination of phase synchronization between cells as illustrated 

in the next section. 

 

3.4 RESULTS 

3.4.1 PHASE VARIATION IN SINGLE CELLS 

It is useful to consider whether or not the continuation of the Hilbert phase has any 

effect.  The original Hilbert phase 𝐹𝐻(𝑡)  and continuous Hilbert phase 𝐹𝐶(𝑡) were computed 
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for a single cell and for each of the ~1,591 single cell trajectories and averaged (Fig. 3.2). A 

Hilbert phase 𝐹𝐻(𝑡) for a single randomly selected cell is shown on the top panel and is 

extremely ragged as it approaches −𝜋 or 𝜋, but the continuous curve 𝐹𝐶(𝑡) smooths over the 

discontinuities.  The Hilbert phase 𝐹𝐻(𝑡) is an angle and confined to the interval from −𝜋 to 𝜋 

(as shown in the lower panel of Fig. 3.2). The average trajectory  of the continuous Hilbert 

phase 𝐹𝐶(𝑡) (middle panel) is smoother over time than the average of the original Hilbert phase 

𝐹𝐻(𝑡) too and is a measure of time for a periodic process(20).  The average Hilbert phase 

𝐹𝐻(𝑡)  is also ragged due to the stochastic intracellular variation in each cell(9) as well as the 

discontinuity in 𝐹𝐻(𝑡) =  𝑡𝑎𝑛−1
𝑥̃(𝑡)

x(t)
 at 𝜋  and -𝜋.  The distribution of Hilbert phase as a 

consequence appears non-uniform on the unit circle (Fig. 3.2). 

 Each cell may have its own oscillator [1].  The phase 𝑀𝐶(𝑡1, 𝑡0) in cycles as defined 

above can then be calculated for each member of a population of ~1,591 isolated oscillators in 

N. crassa (Fig. 3.3) [1].  The reported phases 𝑀𝐶(𝑡1, 𝑡0)  are in cycles completed in the ten-day 

interval of the experiment.  The cycles completed on average are visible in Fig. 3.2.   As can be 

seen, there was substantial variation in the phase 𝑀𝐶(𝑡1, 𝑡0)  of the oscillators as measured in 

cycles (Fig. 3.3). At the single cell level each cell is marching to a different drummer.  This 

raises the question of how cells synchronize to generate the coherent behavior at 107 cells. 

 Cellular clocks are fundamentally different from circadian clocks at the macroscopic 

level. Overlaid on the circadian rhythm is high frequency noise from the cell, much like an 

hour hand added on to the tolling of bells at the end of a day. The Hilbert phase and phase in 

cycles 𝑀𝐶(𝑡1, 𝑡0)  count all cycles from all harmonics. As shown earlier an examination of the 
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periods of cellular oscillators has demonstrated a major circadian harmonic [7] accounts for 

one cycle per day.  The remaining cycles come from the high-frequency intracellular noise [1].  

For example, the high frequency noise in a cellular clock allowed it to complete over 7 cycles 

per 24-hour day (Fig. 3.3). This feature of the experiments also allowed the examination of 

cellular communication between cells in droplets or neighborhoods. Those in the same droplet 

are within 74 microns [21] of each other and have the opportunity to communicate and hence 

perhaps synchronize.   

 

3.4.2 SOCIAL ENVIRONMENT OF CELLS AND ITS EFFECT ON PHASE  

In the original experiments cells were placed in the same droplet or in different droplets using a 

microfluidics device over ten days to observe circadian rhythms, thereby placing cells in 

different neighborhoods or “social environments” [1]. Those cells in different droplets have no 

opportunity to communicate and continue marching to their own drummer.  It would be 

interesting to know whether or not 2-cell droplets have a different phase trajectory than 1-cell 

droplets.  

The tornado plots of the analytic signal (𝑥(𝑡), 𝑥̃(𝑡)) are shown (Fig. 3.4). The red 

tornado is an average over 568, 2-cell trajectories in the complex plane; the black tornado is an 

average over 1,644 single cell trajectories. While the 2-cell average trajectory very closely 

tracked the average 1-cell trajectory, the average 2-cell trajectory was consistently closer to the 

origin than the average 1-cell trajectory.  This suggests that the 2-cell phase trajectories of the 
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analytic signal behave differently than 1-cell phase trajectories, but this is analyzed in more 

detail with synchronization measures derived from the Hilbert phase in the next section. 

 

 

Figure 3.2 The continuous Hilbert phase FC (t)  as a trajectory for a single cell (top panel) or 

averaged over all 1,591 cells is a smooth function of time (in red) while the original Hilbert 

phase for cell number 318 (in blue) or averaged over all cells is ragged (in blue) and as an 

angle is confined to the interval −𝜋 to 𝜋 on the upper panel (see bottom panel). For the top and 

middle panels  the values of the continuous Hilbert phase 𝐹𝐶(𝑡) are plotted on the left vertical 

axis; the values of the original uncontinuized Hilbert phase 𝐹𝐻(𝑡) are plotted on the right 

vertical axis. On the lower panel is a plot of the original Hilbert phase 𝐹𝐻(𝑡)  as a phase angle 

from −𝜋 to 𝜋 on the unit circle.  Only Hilbert phase values at the final time point are displayed. 
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Figure 3.3 There was considerable variation in phase MC (t1,t0 )   over ~1,591 cells. The phase 

MC (t1, t0) was computed from t = 0 to t =281 h and is for ~1,591 cells that have no neighbors 

in a droplet.  The mean and standard deviation of this histogram of this histogram of phases for 

single cells were 74 cycles and 10 cycles, respectively. 

 

3.4.3 PHASE AS A FUNCTION OF TIME 

  Another feature of the phase plots is that they are a function of time.  Both the 

continuous Hilbert phase  𝐹𝐶(𝑡)  and the phase 𝑀𝐶(𝑡1, 𝑡0) in cycles are plotted as a function of 

time t1 with t0 = 0 averaged over all ~1,591 cells (Fig. 3.2 and Fig. 3.5).  The phase 𝑀𝐶(𝑡1, 𝑡0)  

in cycles resembles the Hilbert phase, but passes through the origin in Fig. 3.5.   As a basis of 

comparison, the phase in cycles 𝑀𝐶(𝑡1, 𝑡0) for the data without a sinusoidal assumption and 

phase in cycles 𝑀𝐶(𝑡1, 𝑡0) for a sinusoid 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 +  𝜙)  are plotted as a function of 
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time in Fig. 3.5. The parameters in the sinusoid were determined by least-squares for all 1,591 

cells. As can be seen, the phase curves of the cells are approximately sinusoidal (Fig. 3.5). 

If the cells are in different droplets and unable to communicate, the expectation is that 

these cellular oscillators may drift out of phase with respect to each other. To test this 

hypothesis, the 2.5 percentile and 97.5 percentile curves about the mean phase of ~1,591 

isolated cells (Fig. 3.5) were computed over time. As expected, the percentiles drifted away 

from the mean over time.  Incidentally the percentiles provide support for the phase curve 

(dotted) of the sinusoid not being statistically different from the average phase curve (in blue) 

of isolated cells.  The phase curve for the sinusoid is found between the percentiles of the 

average phase curve for the cells.   

The Hilbert phase curves can also be used to examine the synchronization of cells, 

where phase may change with time.  Consider 1,136 cells in droplets with 2-cells per droplet.   

How do these 568 (=1,136/2) pairs of droplets compare in phase with 1,644 cells that have 

never known neighbors?  The average Hilbert phase for 2-cell droplets steadily diverged from 

that of the 1-cell droplet in Fig. 3.6 and was smaller than the average of the 1-cell droplets, as 

would be expected from Figure 3.4.  Yet, the percentiles for both the 2-cell and 1-cell droplets 

still drifted apart with time, indicating an accumulation of phase variation with time even when 

cells have the opportunity to talk with each other. 

Now consider 10 cells that have been placed in isolated droplets within the same data 

set [1] and never experienced neighbors.  Also consider 10 droplets each with 10 cells that have 

lived together as roommates for 10 days within the same droplet. The average Hilbert phase 
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curves are shown for the isolated cells and 10 droplets each with 10 roommates (Fig. 3.7). As 

can be seen, the average continuous Hilbert phase for 10 cells in each of 10 droplets steadily 

diverged from the average of 10 singletons, who have never known neighbors. Their phases 

 

 

Figure 3.4 The curve (or analytic signal) (x(t),x ̃(t)) spiraled over the complex plane for 2-cell 

(red) and 1-cell (black) trajectories over time with more phase variation in the 1-cell 

trajectories. The (x,y) plane is the complex plane. The vertical dimension is time. The 

trajectory of fluorescence x(t) was detrended after Rhodamine B normalization.  The red 

tornado is an average over pairs of cells in the same droplet, and the black tornado is an 

average over single cells in a droplet [1]. 
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Figure 3.5 The phases of a sinusoid (in red) and that of the data (in blue) were similar, implying 

the oscillations are approximately sinusoidal.  The average frequency ω = 0.3014 was used in 

x(t)=Acos(ωt+ϕ) to compute the phase (in red).  The average frequency ω was computed from 

fitting 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙)  individually to ~1,591 cell trajectories by Least Squares using a 

Python script.  The percentiles in yellow and orange are shown about the mean phase. 

 

depend on the cell’s social environment. Interestingly the 10-cell mean drifted outside of the 95 

percent confidence band about the 1-cell droplet mean. Yet the phase variation also increases 

with time based on the percentiles of both 10-cell droplets and 10 singletons drifting away from 

the mean.  

Phase also enters directly into the calculation of some synchronization measures [9]. One of the 

best studied synchronization measures is the Kuramoto order parameter(K) [22]: 

                           𝐾 = 〈|𝑛−1∑ exp (𝑖F𝑗) − 〈𝑛
−1∑ exp (𝑖F𝑗

𝑛
𝑗=1 〉𝑛

𝑗=1 |〉.   
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Figure 3.6 The average continuous Hilbert phase FC (t) for 568 droplets each with 2 cells in one 

droplet (in red) is plotted against time differs from the average Hilbert phase FC (t) for 1,644 

cells each isolated in a single droplet and never having known neighbors.  There was a total of 

568 curves being averaged in the first case and 1,644 curves, in the second case. The 2-cell 

droplets are coded in red; the 1-cell droplets are coded in black.  Percentiles are dotted lines 

with red-dotted lines belonging to the 2-cell droplets and with black-dotted lines belonging to 

the 1-cell droplets. 

 

The quantity 𝐹𝑗 = 𝐹𝑗
𝐶(𝑡1) is the continuous Hilbert phase for the jth oscillator with t1 = 

480 half hours.  There are n oscillators in a particular social environment, and the brackets 〈 〉 

denote a time average. As K approaches 1, the collection of n oscillators approaches being fully 

synchronized.  As K approaches 0, the collection of n oscillators approaches no 

synchronization. A nice feature of biological oscillators is their social environment. Cellular 

oscillators may live together in a droplet or may be separated into separate droplets. 
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The Kuramoto K for the 1-cell and 2-cell droplets was computed as follows to examine 

the effect of sociality on oscillators.  For the 1-cell droplets, the n in equation above was set to 

1, and the K was computed for each isolated cell.  From the resulting 1,644 K values the mean 

(0.0322) and standard error (0.0007) of K was computed. For the 2-cell droplets, the n in the 

equation above was set to 2, and the K was computed for each cell pair in a droplet. From the 

resulting 568 =1,136/2 K values, the mean (0.7428) and standard error (0.0022) of K was 

computed.  

It is useful to consider the effects of sociality on synchronization [9], and in particular 

to explain the difference in phase between 1-cell and 2-cell droplets in Fig. 3.4 and Fig. 3.5. As 

a control the Kuramoto K was calculated on all 1,644 1-cell droplets with the resulting K = 

0.0322 +/- 0.0007, which is near zero as expected.  Then the Kuramoto K was calculated on all 

1,136 cells with n =2.  The Kuramoto K for each pair of cells was then averaged over all 

droplets to yield K = 0.7428 +/- 0.0022.  The conclusion is that for the 2-cell droplets cells 

within droplets are highly synchronized relative to the negative control provided by the 1-cell 

droplets, explaining the phase difference between 1- and 2-cell droplets in Fig. 3.4. A z-test of 

the difference was highly significant (𝑧 = (.7428 − .0322)/√(6.737𝑋10−4)2 + (.0022)2= 

314.13, P < .00001). 

A Wilcoxon Rank Sum test of the two unpaired samples of Kuramoto K’s for 1-cell and 

2-cell droplets was also highly significant (P < 0.00001). Alternatively, a more conservative 

test is to create a sample of 568 pairs drawn randomly with replacement from the 1,644 cells in 

1-cell droplets. With n=2 for the artificially generated pairs, in which strangers are neighbors, 

the average Kuramoto K for each pair of isolated cells was K = 0.6853 +/- 0.0015. A z-test of 
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Figure 3.7 The average continuous Hilbert phase FC (t) for 10 droplets each with ten cells in 

one droplet (in red) is plotted against time differs from the average Hilbert phase FC (t) for ten 

cells each isolated in a single droplet and never having known neighbors.  There was a total of 

~100 curves being averaged in the first case and 10 curves, in the second case.  The 10-cell 

droplets are coded in red; the 1-cell droplets are coded in black.  Percentiles are dotted lines 

with red-dotted lines belonging to the 10-cell droplets and with black-dotted lines belonging to 

the 1-cell droplets. 

 

  the difference from cells that have truly experienced another cell was highly significant with z 

= 21.89 ( P < .00001).  The Wilcoxon Rank Sum test of the two unpaired samples of Kuramoto 

K’s for 2-cell droplets vs artificially created 2-cell droplets was again highly significant (P 

<.00001). Other synchronization measures that reflect the sociality of the oscillators could be 

used to test for synchronization as well [9]. 
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3.5 DISCUSSION  

 The notion of phase used here has been in use since the time of Huygens [23,24] in the 

description of coupled pendula right down to the present [16].  The notion of Hilbert Phase 

appeared early in the 20th Century [11].  All 4 phase measures 

(𝜙, 𝐹𝐻(𝑡), 𝐹𝐶(𝑡), 𝑎𝑛𝑑 𝑀𝐶(𝑡1, 𝑡0)) are inter-related and graphically summarized in figures 3.2 

and 3.5. The first two measures (𝜙, 𝐹𝐻(𝑡))  are defined on the circle, while the last two 

measures (𝐹𝐶(𝑡), 𝑎𝑛𝑑 𝑀𝐶(𝑡1, 𝑡0))  are defined on the non-negative part of the real line. 

 There are several advantages to the notion of phase 𝑀𝐶(𝑡1, 𝑡0) in cycles described here.  

The phase 𝑀𝐶(𝑡1, 𝑡0) can be computed in an integrated way with the period and amplitude of a 

periodic process using the Fast Fourier Transform [17], in for example, MATLAB (see scripts 

on GitHub in Materials and Methods).  The phase measure does not presume a linear relation 

with time as does the phase shift 𝜙 in a sinusoid. Using the phase shift as a measure of phase 

would be problematic in extrapolating to later times, if the phase were nonlinear in time, as it is 

likely to be when there is cellular synchronization. The phase measure 𝑀𝐶(𝑡1, 𝑡0)  is 

functionally independent of the period and amplitude derived from the periodogram or “power 

spectrum” [1].  This phase measure represents new information about a periodic process not 

embedded in the amplitude and period [1]. 

 The four phase measures are useful in combination.  For example, the use of the phase 

shift in combination with the phase in cycles allows an assessment of whether or not a periodic 

process x(t) is sinusoidal (Fig. 3.5).  There is a generalization of the phase shift, namely the 

continuous Hilbert Phase 𝐹𝐶(𝑡)  at time t = 0, which coincides with the phase shift, if the 
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process x(t) were sinusoidal.  This generalized phase shift is normally subtracted from the 

phase because often synchronization experiments are done to minimize this quantity – cells are 

started in a nearly synchronized state at the beginning of an experiment. Both the continuous 

phase 𝐹𝐶(𝑡) and phase 𝑀𝐶(𝑡1, 𝑡0) in cycles are smooth and provide information on when 

cellular oscillators synchronize (Fig. 3.6).  The original Hilbert phase 𝐹𝐻(𝑡) is also in some 

sense closer to the data and can be plotted on a circle (Fig. 3.2, lower panel).  Some scientists 

also feel more comfortable with a notion of phase on the circle(20). In this case the circular plot 

reveals a nonuniformity in the phase angle 𝐹𝐻(𝑡) over the circle.  Finally, the phase can be 

used to evaluate various models for how cellular clocks synchronize [7].  When studying 

synchronization, the phase may be used to construct additional measures of synchronization(9) 

as illustrated here for the Kuramoto order parameter. 

 Cellular clocks are fundamentally different from circadian rhythms at the macroscopic 

scale – they have a high frequency hour hand in addition to the circadian cycle (Fig. 3.3).  

Much of these high frequency cycles are generated by stochastic intracellular noise in reactions 

that go on within the cell [1].  There are multiple frequencies on which cellular clocks keep 

time, much like the two hands on a clock.  This can be seen in the upper panel of Fig. 3.2, in 

which cycles completed is greater than those generated by circadian oscillations present in 

single cell oscillators [7]. 

 The Hilbert phase has not only been used to study oscillators at the single cell level [1] 

but has been used to study other periodic biological processes, such as through monitoring the 

beating heart [25].  The Hilbert phase and its derivative measure of phase here potentially 

provide useful new information about a variety of biological rhythms. 
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CHAPTER 4 

A STOCHASTIC CLOCK NETWORK WITH LIGHT ENTRAINMENT IS IDENTIFIED 

FOR SINGLE CELLS OF NEUROSPORA CRASSA BY ENSEMBLE METHODS 
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ABSTRACT 

Stochastic networks for the clock were identified by ensemble methods using genetic 

algorithms that captured the amplitude and period variation in single cell oscillators of 

Neurospora crassa. The genetic algorithms were at least an order of magnitude faster than 

ensemble methods using parallel tempering and appeared to provide a globally optimum 

solution from a random start in the initial guess of model parameters (i.e., rate constants and 

initial counts of molecules in a cell).  The resulting goodness of fit 𝜒2  was roughly halved 

versus solutions produced by ensemble methods using parallel tempering, and the resulting 𝜒2 

per data point was only 𝜒2/𝑛 = 2708.05/953 =2.84. The fitted model ensemble was robust to 

variation in proxies for “cell size”. The fitted neutral models without cellular communication 

between single cells isolated by microfluidics provided evidence for only one Stochastic 

Resonance across days from 6 h to 36 h of light/dark (L/D) or in a D/D experiment. When the 

light-driven phase synchronization was strong as measured by the Kuramoto (K), there was a 

degradation in the single cell oscillations about the stochastic resonance.   The rate constants 

for the clock stochastic network were consistent with those determined on a macroscopic scale 

of 107 cells.  



88 

 

4.1 INTRODUCTION 

 One of the main challenges of systems biology is explaining the dynamic behavior of 

single cells with their stochastic intracellular variation [1, 2].  This stochastic intracellular 

variation has profound consequences on the regulation and phenotypes of genetically identical 

individual cells[3, 4].  One example is the effects of stochastic intracellular variation on the 

dynamics of genes and their products involved in the biological clock [5, 6].  While 

populations of 107 cells/ml display highly synchronized behavior producing regular oscillations 

at the macroscopic scale, the behavior of individual cells is quite different.  There is now 

evidence that individual cells in Neurospora crassa have clocks [5], but there is substantial 

variation in phase between the clocks in different cells. What mechanisms at the single cell 

level explain how cells oscillate, and how do these cells come to oscillate in phase on a 

macroscopic scale? 

There are three hypotheses for how cells come to oscillate as they transition from the 

single cell level to the macroscopic level.  One possibility is that there is some form of 

chemical signal shared between cells that allows cells with different clock phases to reinforce 

and synchronize each other [6-8].  A second possibility is that the noise itself can play a 

positive role in generating oscillations[9], and the mechanism for noise producing oscillations 

can invoke a physical hypothesis for biological oscillators known as Stochastic Resonance[10].  

A third possibility is that there is some cell cycle gated mechanism that imposes regular 

oscillations on single cells [11-14]. 
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These three mechanisms can be examined using flow focusing microfluidics [15] to 

capture individual cells under particular conditions for observation and to manipulate the 

environment of the cell to test individually these hypotheses under the effects of a variety of 

factors, such as light [6].  The conditions of the experiment here are used to isolate and test the 

Stochastic Resonance Hypothesis.  Single cells are isolated in different droplets for observation 

so that they cannot communicate.  Also single cells are maintained in media so that they cannot 

divide [6].  In this way the effects of cell-to-cell communication and cell cycle-gating on the 

clock can be eliminated. Only the mechanism of Stochastic Resonance remains to be examined 

[10]. 

The Stochastic Resonance Hypothesis can be viewed as a prediction of a reasonable 

null hypothesis or “Neutral Model” [16] specified by a stochastic clock network (Fig 3.1)  that 

does not invoke any other mechanism to explain clock-like behavior. In previous work the data 

on ~1591 isolated cells were used to test the adequacy of a clock stochastic network in the dark 

(D/D) to provide initial evidence for the Stochastic Resonance hypothesis [17].  Here we use 

additional light entrainment data on single cells to construct a stronger test of this neutral 

model for explaining clock-like properties and to explore its limitations using light entrainment 

of single cells under a 6 h, 12 h, and 36 h artificial day with equal amounts of light and dark 

(L/D) [5].  In addition to providing a stronger test of the neutral model the light entrainment 

data can also be used as a stronger test of the Stochastic Resonance Hypothesis. 

Examining the neutral clock stochastic network without communication and without 

cell cycle gating is of particular interest under varying light regimes.  In some models and 

experimental systems oscillators are hypothesized to have limits to their ability to entrain to an 
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external entrainment signal - if the driving signal has a period sufficiently far from the intrinsic 

period of the cell oscillator, then entrainment fails [18].  These entrainment limits have been 

examined in the mammalian Suprachiasmatic Nucleus (SCN) [19]. 

The model filamentous fungus, N. crassa, is particularly well suited to test this neutral 

model for the clock because isolated cells maintain circadian oscillations [6].  The N. crassa 

model system is then complementary to cells in the SCN, which usually cannot sustain 

oscillations when isolated [20].  The N. crassa system is also complementary to another major 

model system for the clock, the cyanobacterium, Synechoccocus elongatus, because N. crassa 

can entrain to light at the single cell level [5].  In contrast S. elongatus shuts down transcription 

in the dark, making it more difficult to study light entrainmen t[21].  Thus, N. crassa is 

particularly well suited to use both dark (D/D) and light entrainment experiments (L/D) to 

provide a strong test of the neutral hypothesis of the clock stochastic network and Stochastic 

Resonance. 

There are several questions to be addressed about this neutral model: (1) is the 

stochastic network of the clock consistent with the available single cell data? (2) if not, how 

does the model fail? (3) Is there a limit to the neutral model’s ability to explain light 

entrainment data? [18] (4) When the amount of single cell data is quadrupled to include light 

entrainment, how does support for the Stochastic Resonance Hypothesis hold up with light 

entrainment data and data in the dark? (5) Does stochastic intracellular variation through a 

Stochastic Resonance mechanism have consequences for circadian oscillations seen in 

genetically identical cells? 
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Because this chapter is in some places quite technical, a road map for it is now 

provided.  The end point and message for this work is the last figure, demonstrating a 

stochastic resonance in the fitted network.  Below or above the stochastic resonance the 

circadian rhythms of single cells are degraded. At the beginning the model is laid out.  The 

novel element to this stochastic network for single cells of N. crassa is the inclusion of light as 

a molecular species.  The structure of this network is suggested by earlier deterministic models 

on the macroscopic scale of 107 cells/ml [22]. Then this stochastic network for single cells is 

fitted to the average periodogram or power spectrum using ensemble methods originally 

introduced by the authors to systems biology from statistical physics [23]. In the initial 

implementation of these ensemble methods for the D/D data it was found that the Metropolis-

Hastings method of Markov Chain Monte Carlo (MCMC)  was insufficient for identification of 

the model ensemble, but more sophisticated parallel tempering methods were successful in 

identifying the stochastic network for single cells in the dark (D/D) [17].  So, parallel 

tempering methods for fitting the clock stochastic network became the natural starting point for 

fitting model ensembles to L/D data here. These more complicated stochastic networks with a 

light response proved to be a challenge for parallel tempering methods.  It was necessary to 

develop a novel approach to ensemble methods using genetic algorithms [24].  Genetic 

algorithms represent a very broad class of optimization methods [25], and here two recently 

developed genetic algorithms [26, 27] were used to identify model ensembles.    

Then an assessment of goodness of fit was made using the Hilbert phase, which is 

functionally independent of the period and amplitude captured in the average periodogram of 

single cells [28].  Consideration of the phase over time showed precisely where the model  
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ensemble succeeded and where the ensemble needed improvement when the effects of light 

synchronization were weak. Stochastic networks have one additional parameter, the “size of a 

cell”, that determines the level of stochastic intracellular noise in a cell.  An empirical approach 

was developed to identify the level of stochastic intracellular noise in a cell by relating the 

noise to the cell’s RNA/DNA and protein/DNA ratios.  The model fitting was shown to be 

robust to variation in the RNA/DNA and protein/DNA ratios and hence in the level of 

stochastic intracellular noise. Having identified a promising “neutral model” with no other 

hypothesized factors affecting cellular phase synchronization, it was demonstrated that there 

was only one stochastic resonance in the fitted ensemble for a variety of L/D experiments and 

that as the noise was varied away from this stochastic resonance, circadian oscillations were 

degraded. These last two observations are the major points of the chapter. 

  

4.2 MODEL  

 The neutral model for each genetically identical cell is a stochastic network displayed in 

Fig 4.1, and the broad outline of its features are given in Fig 4.1A.  The network of genes and 

their products begins with three clock mechanism genes in Fig 4.1A: (1) the gene frequency 

(frq) encoding the oscillator protein FRQ; (2) one of two activator genes, white-collar-1 (wc-1) 

encoding WC-1; and (3) the second of two activator genes, white-collar-2 (wc-2) encoding 

WC-2.  The positive elements WC-1 and WC-2 are transcription factors that form a White-

Collar Complex (WCC) [29].  In Fig 4.1A the WCC protein activates the oscillator gene frq, 

which in turn produces ultimately the FRQ protein, which is involved in deactivating the 
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complex WCC.  This negative feedback loop in part explains the origin of oscillations at the 

macroscopic scale[22].  There is also a positive feedback loop involving FRQ acting on the wc-

1 mRNA (wc-1r) in Fig. 4.1A.  The “stabilization” of this wc-1 mRNA by FRQ is crucial to 

explaining oscillations as well at the macroscopic scale [22]. 

The details of how the stochastic network functions are given in Fig 4.1B. A single cell 

is described by the counts of genes and their cognate messenger RNAs (mRNAs) and proteins 

in a cell.  The molecular counts of species change at rates (the labels on circles) associated with 

the different reactions (circles) in the kinetic network. As examples, all clock mechanism genes 

(frq, wc-1, and wc-2) are transcribed at a rate Sx (e.g., S4) and translated at a rate Lx (e.g., L3). 

Messenger RNAs(mRNAs) and proteins decay at a rate Dx.  The key reactions for oscillations 

at the macroscopic level are the rate of activation/deactivation (A and of 𝐴̅) of the oscillator 

gene frq, the rate of deactivation P of WCC by FRQ, and the decay rate D7 of the stabilized 

mRNA wc-1r1 [22].  There are a total of 23 reaction rates and 12 initial conditions for a total of 

35 parameters in this model. 

Genes under the control of the clock mechanism are called clock-controlled genes 

(ccg).  One ccg of particular interest is the hypothesized gene that produces the autoinducer or 

quorum sensing signal Si synchronizing the clocks in different cells (indexed by i).  Under the 

neutral hypothesis the rates of production of this signal are zero (i.e., if KS1 = 0).  There is no 

communication hypothesized between cells in this paper in that cells are isolated in different  

droplets.  Another is the recorder gene ccg-2P:mCherry in the MFNC9 strain for observing the 

operation of the clock (i.e., the hands on the face of the clock)[30]. In this model the maturation 
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of the mCherry protein is captured in transcription rate (Sc) and translation rate (Lc).  The 

degradation rate of the mCherry protein is captured by Dcp.  

The one novel feature from earlier work [17] is the presence of photons as a light 

species in Fig 4.1B. This introduces novel light (C2IL) and dark reactions (C2) for the 

production of WCC as in earlier work [31] (see Fig 4.2 of this earlier work).  This slight 

extension of the model can be shown to be formally equivalent to another network with only 

one reaction (𝐶2 + 𝐶2𝑓𝐼𝐿𝑠(𝑡)) producing WCC that varies with time in the following way. 

A photon species named phot is introduced in Fig 4.1 whose temporal trajectory is not 

obtained from solving the Master Equation by the Gillespie Algorithm [32] but is given to us. 

The concentration [phot] is an exogenous variable of the form: 

             [𝑝ℎ𝑜𝑡] = 𝐼𝐿𝑠(𝑡), 

where 𝐼𝐿 is the light intensity and 𝑠(𝑡) switches between “Light On” (L), with “On”-intensity 

IL,  and  “Light Off” (D), after every time interval  tLD, starting with “L” at time tL,0: 

                        s(t) = 1    for     tL,n-1    t  < tL,n    and   n = 1, 3, 5, 7, …  (i.e., if  n  is  odd) 

  s(t) = 0    for     tL,n-1    t  < tL,n    and   n = 2, 4, 6, 8, …  (i.e., if  n  is even). 

  tL,n    =  tL,0  + n tLD      for   n=0, 1, 2, 3, 4, … .   

So, for the experiments in [5, 6] as an example for the 12 h day, the specification of the switch 

s(t) would be: 

tLD = 6h,  IL = 5300 lux,  tL,0 = 0 h. 
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Here we assume   tL,0 = 0 h  is the time when the L/D exposure cycles were started. There is 

then one rate for a L/D experiment of the form  

   𝐶2  +  𝐶2𝐿𝐼𝐿𝑠(𝑡) . 

Because we cannot separate the product 𝐶2𝐿𝐼𝐿, we treat it as one parameter called 𝐶2𝐼𝐿 in Fig 

4.1B, which has the same units as 𝐶2.  and defined as 𝐶2𝐼𝐿 = 𝐶2𝐿𝐼𝐿 . Also, for the L/D exposure 

to have any substantial effect on the kinetics of the system, it is reasonable to assume that the 

value of 𝐶2𝐿𝐼𝐿 is comparable to 𝐶2, in order of magnitude. For example, if 𝐶2𝐿𝐼𝐿 ≪ 𝐶2  the 

effect of light exposure on the kinetics is probably negligibly small. On the other hand, if 

𝐶2𝐿𝐼𝐿 ≫ 𝐶2  the effect of light exposure would completely dominate the kinetics, i.e., the 

periodogram of the [CCG]-signal would look very different from the “dark clock” model 

periodogram, with a strong peak at 12h period for 12h-day experiment, and much less intensity 

at a 24h period. 

 So, to get a reasonable estimate for 𝐶2𝐿𝐼𝐿, we write  

   𝐶2𝐿𝐼𝐿 = 𝑓𝐼𝐿𝐶2  

with fIL being a parameter varying in the range (0.01, 100).  The parameter 𝐶2 is specified from 

the D/D experiments, and the parameter 𝑓𝐼𝐿 affecting illumination was initially set to 2, but 

then was allowed to float in the fitting.  The parameter 𝑓𝐼𝐿 is kept constant across L/D 

experiments because these experiments were done on the same apparatus and conditions except 

for variation in the length of the day [5]. 
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4.3 MATERIALS AND METHODS  

4.3.1 SINGLE CELL DATA OF N. Crassa 

 The single cell data from four experiments are used to evaluate the stochastic clock 

network in Fig 4.1.  The cells in these experiments are equipped with an mCherry recorder 

under the control of a clock-controlled gene-2 promoter (ccg-2P) [30].  This fluorescent 

mCherry strain is referred to as MFNC9 [30].  Each of the four experiments involved isolating 

over 1,000 cells in individual droplets, synchronizing cells initially with 26 h of light, and then 

observing their fluorescence every half hour for at least 10 days [5].  Four experiments were 

conducted, one in the dark (D/D) and three under 6 h, 12 h, or 36 h L/D regimes with equal 

amounts of light and dark [5].   

The D/D data are available [17], and the L/D entrainment data are available at the IEEE 

Dataport, https://ieee-dataport.org/documents/single-cells-neurospora-crassa-show-circadian-

oscillations-light-entrainment-temperature 

 

4.3.2 RESCALING FROM DETERMINISTIC TO STOCHASTIC MOLECULAR NUMBER  

UNITS  

A method for rescaling initial concentrations and reaction rates of a deterministic network to 

molecular counts and reaction rates of a stochastic network was described in chapter 2. 

 

https://ieee-dataport.org/documents/single-cells-neurospora-crassa-show-circadian-oscillations-light-entrainment-temperature
https://ieee-dataport.org/documents/single-cells-neurospora-crassa-show-circadian-oscillations-light-entrainment-temperature
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Figure 4.1 (A) The key elements of the clock stochastic network are summarized.  There are 

both a negative feedback loop, in which WCC activates the gene frq encoding the oscillator 

protein and a positive feedback loop in which the FRQ protein stabilizes the wc-1r mRNA.  The 

genes wc-1 and wc-2 are the positive elements in the clock, while the frq gene is the negative 

element in the clock. (B) The full specification of the model is given by the network in panel B.  

Circles denote reactions, and boxes represent reactants and products in the network.  Double 

arrows denote catalytic reactions.  The labels on reactions do double duty as both label for the 

reactions and as rate coefficient(s) for a particular reaction.  Those reactions with no resultant 

product constitute decay reactions.  All proteins and mRNAs have decay reactions as examples.  

The ccg gene and its cognate products could be ccg-2 or a hypothetical gene ccg encoding a 

quorum sensing signal as examples.  The red dotted boxes denote components of the network 

across which there is approximately no net flow of molecules. Typically, the dotted boxes are 

only crossed by catalytic reactions. Modified from [17].  
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4.3.3 RESCALING WITH THE RNA/DNA AND PROTEIN/DNA RATIOS WITHOUT  

CHANGING THE NETWORK DYNAMICS  

The model above specifies the Master Equation, which describes how the counts of molecular 

species in Fig. 4.1B change over time [33].  The Master Equation can be approximated by the 

Chemical Langevin Equation [34], which consists of two components, a deterministic term and a 

noise term.  The deterministic term corresponds to a system of ordinary differential equations.  

The first term is required to be invariant under rescaling by the RNA/DNA and protein/DNA 

ratios to leave the network dynamics invariant. Consider one component of the deterministic 

term, namely the L3 and D6 reactions in dotted box d of Fig 4.1B: 

   𝑓𝑟𝑞𝑟1  
𝐿3
⇒ 𝐹𝑅𝑄 + 𝑓𝑟𝑞𝑟1 , 𝐹𝑅𝑄 

𝐷6
⇒  ⊘ 

The contribution to the dynamics of FRQ by this reaction is: 

   
𝑑[𝐹𝑅𝑄]

𝑑𝑡
= 𝐿3[𝑓𝑟𝑞𝑟1] − 𝐷6[𝐹𝑅𝑄] 

The ratios of RNA/DNA (𝑅𝑅𝑁𝐴:𝐷𝑁𝐴) and protein/DNA (𝑅𝑃𝑟𝑜𝑡:𝐷𝑁𝐴) are measured experimentally 

or changed to vary the stochastic intracellular noise.  If the ratios are changed, then the scales of 

RNA and protein counts change as well so that 

   
𝑑𝑅𝑃𝑟𝑜𝑡:𝐷𝑁𝐴[𝐹𝑅𝑄]

𝑑𝑡
= 𝐿3𝑛𝑒𝑤𝑅𝑅𝑁𝐴:𝐷𝑁𝐴[𝑓𝑟𝑞

𝑟1] − 𝐷6𝑛𝑒𝑤𝑅𝑃𝑟𝑜𝑡:𝐷𝑁𝐴2[𝐹𝑅𝑄], 

which becomes 

   
𝑑[𝐹𝑅𝑄]

𝑑𝑡
= 𝐿3𝑛𝑒𝑤

𝑅𝑅𝑁𝐴:𝐷𝑁𝐴

𝑅𝑃𝑟𝑜𝑡:𝐷𝑁𝐴
[𝑓𝑟𝑞𝑟1] − 𝐷6𝑛𝑒𝑤

𝑅𝑃𝑟𝑜𝑡:𝐷𝑁𝐴

𝑅𝑃𝑟𝑜𝑡:𝐷𝑁𝐴
[𝐹𝑅𝑄]. 
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One way that the dynamics remain unchanged is if: 

   𝐿3 = 𝐿3𝑛𝑒𝑤
𝑅𝑅𝑁𝐴:𝐷𝑁𝐴

𝑅𝑃𝑟𝑜𝑡:𝐷𝑁𝐴
 or 𝐿3𝑛𝑒𝑤 = 𝐿3

𝑅𝑃𝑟𝑜𝑡:𝐷𝑁𝐴

𝑅𝑅𝑁𝐴:𝐷𝑁𝐴
 and 𝐷6𝑛𝑒𝑤 =  𝐷6. 

In this way by stepping through all of the dotted boxes in Fig 4.1, all 23 reaction rates can be 

rescaled to preserve the original dynamics when the RNA/DNA and protein/DNA ratios are 

changed to vary the noise in the stochastic network. The rescaling for some other dotted boxes is 

illustrated in chapter 2. 

A bias-corrected periodogram averaged over cells was used as the model-fitting criterion. The 

bias correction of the periodogram was also described in chapter 2. 

 

4.3.4 USE OF PARALLEL TEMPERING METHOD 

One of the methods used to simulate the behavior of the stochastic clock network under the 4 

different regimes was parallel tempering. We chose the temperature grid (K) of the parallel 

tempering method as explained in chapter 2. Parallel tempering algorithm was performed for 

about 30,000 Monte Carlo updates in Fig 4.2A, where by update we mean the steps 1), 2) and 3) 

described in the add-temperature process (see chapter 2).  

In implementing this temperature grid above, three initial conditions for the parameters were 

tried, and in one of the MCMC runs the target replica at temperature 𝑇1 stopped swapping with 

the neighboring temperature late in equilibration.  To eliminate this problem the linear 

temperature grid was allowed to increase again to include 60 temperatures during equilibration in 

Fig 4.2A. 
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4.3.5 THE ENSEMBLE FOR STOCHASTIC CLOCK NETWORK IS DETERMINED BY 

 RUNS OF GENETIC ALGORITHMS FOLLOWED BY METROPOLIS-HASTINGS  

Since parallel tempering did not provide a satisfactory fitting (see Fig. 4.2A) we employed two 

genetic algorithms to try to find regions of parameter space with a small 𝜒2    [26, 27].  The two 

algorithms used in the simulations are part of the family of genetic algorithms known as Particle 

Swarm Optimization (PSO) algorithms.  PSO algorithms try to optimize a function f defined on a 

domain 𝒟 by dividing a population of particles xi in 𝒟, i=1,2,…,sz, into groups called swarms 

and letting these swarms look for regions in the parameter space that could contain the optimum 

value of f. To make the exploration of the parameter space more effective, the swarms are 

encouraged to share information among themselves. Usually, 90% of the total number of 

generations are used to explore the parameter space to find promising region(s) that could 

contain optimum values of f. The exploration phase is followed by exploitation, whereby the 

algorithm speeds up the convergence of particles to an optimum value of f. In the following, we 

assume that we want to minimize the function f, e.g., the 𝜒2, in equation (2), so f(x1)<f(x2) 

means x1 is better than x2. 

The Dynamic Multi-Swarm Particle Swarm Optimizer with Cooperative Learning 

Strategy (DMS-PSO-CLS) genetic algorithm is now briefly described [27]. It has three features 

for optimization: (1) swarms of particles, moving in the parameter space with the best particle of 

a swarm being denoted by pbest; (2) a culling/recombination stage at the end of a generation 

where each parameter of the two worst particles in each swarm is replaced by the corresponding 

parameter of one of the pbest particles; (3) a regrouping between particles (or migration between 
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swarms) every RR generations  Then the process is repeated in each succeeding generation, 600 

to 1000 generations. 

Swarm movement 

Each of sz particles with NN=4 particles per swarm in MM swarms has an inertia of w, which 

decreases linearly with generation, the initial value being 𝑤1 and the final value being 𝑤2.  The 

acceleration constants 𝑐1 and 𝑐2 determine in part the genetic algorithms in Table 4.1.  Each 

particle i has a position component 𝑥𝑖
𝑑and velocity component 𝑣𝑖

𝑑  on parameter d in the D-

dimensional parameter space, d=1,2,…,D. The dimension D is 35 here.   All parameters in the 

model are rescaled to the unit cube [0,1]35.   Initial conditions were chosen as part of a Sobol 

space-filling sequence in the parameter space [44] or randomly from within the unit cube [45]. 

Equations of motion of the swarm are given by [27]: 

              𝑣𝑖
𝑑 ← 𝑤𝑣𝑖

𝑑 + 𝑐1 ∙ 𝑟𝑎𝑛𝑑1𝑖
𝑑(𝑝𝑏𝑒𝑠𝑡𝑖

𝑑 − 𝑥𝑖
𝑑) + 𝑐2 ∙ 𝑟𝑎𝑛𝑑2𝑖

𝑑(𝑙𝑏𝑒𝑠𝑡𝑖
𝑑 − 𝑥𝑖

𝑑)         (3) 

            𝑥𝑖
𝑑 ← 𝑥𝑖

𝑑 + 𝑣𝑖
𝑑 

for the exploration phase and by 

            𝑣𝑖
𝑑 ← 𝑤𝑣𝑖

𝑑 + 𝑐1 ∙ 𝑟𝑎𝑛𝑑1𝑖
𝑑(𝑝𝑏𝑒𝑠𝑡𝑖

𝑑 − 𝑥𝑖
𝑑) + 𝑐2 ∙ 𝑟𝑎𝑛𝑑2𝑖

𝑑(𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖
𝑑)        (4) 

           𝑥𝑖
𝑑 ← 𝑥𝑖

𝑑 + 𝑣𝑖
𝑑 

for the exploitation phase. 

The vector 𝒑𝒃𝒆𝒔𝒕𝒊 is a particle’s historically best position in the parameter space 

according to (2).  The vector 𝒍𝒃𝒆𝒔𝒕𝒊 is the historically best position in the ith particle’s swarm.   
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Table 4.1 Genetic algorithms with characteristics below were used to optimize the likelihood 

function in (2) and produce an ensemble of models from the 4 experiments described in 

Materials and Methods. Each run was initialized with 𝜃 – parameters either initially positioned 

on a space-filling Sobol sequence[45] or randomly within the 35-dimensional parameter space 

including the illumination parameter 𝑓𝐼𝐿 (see Materials and Methods). All genetic algorithms 

were run for 600-1,000 generations to equilibrate the search for an optimum to Equation (2).  

Method No. of 

swarms 

M 

Particles 

per swarm 

N 

Initialization of 

particles 

Number of 

generations  

Final 𝜒2 

DMS-PSO-CLS[27] 5 4 Sobol 1,000 4607.65* 

DMS-PSO-CLS 20 4 Sobol 1,000 2773.07 

DMS-PSO-CLS 10 4 Sobol 1,000 2781.44 

DMS-PSO-CLS 10 4 random 1,000 3703.9 

DMS-PSO-CLS 10 4 random 600 2743.5 

PSO-DLS[26] 10 4 random 600 2933.5 

PSO-DLS 5 4 Sobol 1,000 2708.05 

PSO-DLS 20 4 Sobol 1,000 2797.88 

PSO-DLS 10 4 Sobol 1,000 3436.22 

PSO-DLS 10 4 random 1,000 2772.33 

PSO-DLS 10 4 random 1,000 2880.11 

PSO-DLS 10 4 random 1,000 2941.89 

PSO-DLS 5 4 random 1,000 6702.86* 

PSO-DLS 20 4 random 1,000 2768.15 

 

*These two algorithms had only 20 particles and were eliminated from further consideration. 

The vector gbest represents the position of the globally best solution, i.e., the best particle 

in the whole population. Note that when lbest and gbest are calculated, the historically best 

solution of all particles in a swarm and historically best of particles in the whole population are 
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being recorded, respectively.    The quantities 𝑟𝑎𝑛𝑑1𝑖
𝑑 and 𝑟𝑎𝑛𝑑2𝑖

𝑑 are uniform random numbers 

drawn from [0,1] that vary with each update to the velocity of a particle. 

Culling and Recombination 

The genetic algorithm in row 2 (Table 4.1) with 𝜒2 = 2773.07 is used to illustrate culling and 

recombination.  For each dimension d, there is a random draw of size 2 from the 80/4 = 20 pbest 

particles moving on the parameter space.  For each dimension d of the parameter space, 2 of the 

pbest particles are randomly chosen, and the best of them will donate parameter d to one of the 

worst particles. The method is repeated for second worst particles.  Since this random draw of 2 

best particles is redone for each dimension, it is possible that the 2 worst particles will have 

contributions from more than 2 of the best particles.  In other words, there is recombination 

between all of the best particles in culling the 2 worst particles from each swarm.   

Regrouping (or migration) 

Particles are randomly regrouped every RR generations.  The constants used were: (1) 𝑤1= 0.9; 

(2) 𝑤2= 0.4; (3) 𝑐1 = 1.49445; (4) 𝑐2 = 1.49445; (5)  𝑣𝑚𝑎𝑥 = 0.2; (6)  𝑣𝑚𝑖𝑛 = -0.2 (7) RR = 5[27]; 

(8) 𝑤3 = 0.2. [27]; (9) T =1 in Equation (2). Inertia weight w was decreased  

linearly from w1 to w2 during exploration phase and was kept constant at 𝑤3 during the 

exploitation phase. Pseudocode is available in [27]. 

An alternative genetic algorithm named Particle Swarm Optimization with Dynamic Learning 

Strategy (PSO-DLS) [26]was also tried (Table 1).  There were only two stages, swarm 

movement and migration. Sharing of information among swarms is done by communicating 

particles. With probability 1-p, a particle does not communicate with other swarms, and its 

movement is described by (3). With probability p a particle does communicate with other  
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swarms, and its movement is described by the following: 

      𝑣𝑖
𝑑 ← 𝑤𝑣𝑖

𝑑 + 𝑐1 ∙ 𝑟𝑎𝑛𝑑1𝑖
𝑑(𝑝𝑏𝑒𝑠𝑡𝑖

𝑑 − 𝑥𝑖
𝑑) + 𝑐2 ∙ 𝑟𝑎𝑛𝑑2𝑖

𝑑 (
1

𝑀𝑀
∑ 𝑙𝑏𝑒𝑠𝑡𝑚

𝑑𝑀𝑀
𝑚=1 − 𝑥𝑖

𝑑)       (5) 

      𝑥𝑖
𝑑 ← 𝑥𝑖

𝑑 + 𝑣𝑖
𝑑 

Equation (4) is used during the exploitation phase. 

This is sometimes referred to as the admixture model of migration with p as the migration 

rate[46]. The same acceleration constants, 𝑐1 and 𝑐2, were used and set to 1.49445.  The 

admixture parameter linearly increases with generation t according to p = t/iter, where iter is the 

total number of exploration generations (in our case 540 or 900 in Table 4.1).  There is 

pseudocode available [26].  

Metropolis-Hastings accumulation followed equilibration using the 12 best solutions in Table 4.1 

and were combined at the end to produce a reconstruction of the likelihood in (2).  A total of 

14,000 total updates were performed for each of the 12 chains.  The first 3,500 updates were 

used to adjust the parameter step widths in the Metropolis-Hastings algorithm and were  

discarded [47].  From the remaining 10,500 updates, every 35th model was sampled for a total of 

300 samples from each of the 12 chains.  The final sample for the accumulation run consisted of 

12 x 300 = 3,600 models. Summary statistics on each model parameter for the fitted ensemble 

are given in Table 4.2. 
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4.4 RESULTS 

4.4.1 OBTAINING THE FITTED STOCHASTIC NETWORK TO THE SINGLE CELL 

 DATA IN BOTH D/D AND L/D EXPERIMENTS  

The equilibration process to fitting the ensemble to the D/D data and 3 L/D experiments 

described in Materials and Methods occurred in three stages by parallel tempering.  In the first 

stage the grid of temperatures was allowed to grow to 17 chains with 15,117 updates.  

Beginning with an initial 𝜒2  = 10,507, the ending achieved was 𝜒2  = 6,371. In order to promote 

further communication between replicas at different temperatures, the temperature grid was 

expanded to 60 chains with 10,567 updates for a final 𝜒2  = 5,977.  In the final stage the 

illumination parameter 𝑓𝐼𝐿 was allowed to float in the fitting process from a value of 2.  In the 

final stage the fitting improved to a 𝜒2  = 5,410 after 8,030 more updates with 60 chains as 

shown in Fig 4.2A.   

 

4.4.2 STRONG TEST OF THE NEUTRAL MODEL WITH LIGHT ENTRAINMENT ON  

SINGLE CELLS 

In chapter 2 the neutral model in Fig 2.1 was tested against D/D single cell fluorescent data alone 

on the MFNC9 strain with a CCGp:mCherry recorder using a periodograms  (of model and data) 

with 256 frequencies.  The power of the 21 h signal in the model could be varied by changing the 

amount of amplification occurring during transcription and translation in the network (Fig 2.1B).  

With little amplification the final molecular counts in the cell of the CCGp:mCherry recorder 

would be smaller and noisier; with substantial amplification the final molecular counts would be   
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Figure 4.2 The chi-squared goodness of fit statistic improved during a Monte Carlo simulation 

used for fitting the model ensemble in Fig 4.1 to average periodograms for the D/D experiment 

and 3 L/D experiments using: (A) parallel tempering or (B) genetic algorithms. In every case the 

genetic algorithms outperformed parallel tempering.  

 

larger and less noisy. In this way the strength of the circadian signal could be examined versus 

the stochastic intracellular noise inherent in a cell’s molecular counts. The model ensemble fitted 

to the D/D data alone predicted Stochastic Resonance in which the power in the periodogram 

spectrum associated with a 21 h peak varied nonlinearly with the level of stochastic intracellular 

noise.   
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 Here we constructed a much stronger test of the neutral model in Fig 4.1 by introducing 

light entrainment data for days of varying length: 6 h day, 12 h day, and 36 h day. This model is 

neutral in the sense that there is no communication between cells because the cells are isolated in 

droplets [5].  We quadrupled the amount of single cell data used to fit the stochastic clock 

network in Fig. 2.1A to single cell data on four experiments, in which each experiment provided 

trajectories on over 1,000 cells every half hour for ten days [5].  Together all four experiments 

produced 953 frequencies in the power spectrum for fitting the ensemble. The data are publicly 

available (see Materials and Methods).  The data can be thought of as protein levels on a CCG 

protein every half hour over 10 days in each experiment, although in truth the CCG-2 protein has 

been replaced with the mCherry recorder [30]. 

 Parallel tempering was used to fit the stochastic network in Fig 4.1B to the experimental 

periodograms on the four experiments. In the accumulation run the final chi-squared statistic (see 

Materials and Methods) was 𝜒2 = 6496.55 with n = 240 + 256 + 201 + 256 = 953 frequencies in 

the periodograms computed from the best of three independent Monte Carlo runs reaching 

finishing stage 1 (Fig 4.2A). The number of parameters in Fig 4.1B was 35 with one parameter 

(𝑓𝐼𝐿) fixed. The contribution of each data point in the periodogram was then 𝜒2/𝑛 =6.82.  This 

fit to the average periodograms of the single cell data was unsatisfactory as shown in Fig 4.3.  

While the data on the D/D experiment were quite well fitted by the model ensemble under the 

neutral model in Fig 2.1, the model ensemble did not track well to the data for the 6 h and 12 h 

day. In both cases there were two peaks in the power spectrum, but the 6 h and 12 peaks in Fig 

4.3 were not well predicted by the model.  One possibility is that the model ensemble failed to 

capture fully the entrainment to light in Fig 4.3 because the illumination parameter fIL was fixed 

at 2.  During the third stage of the equilibration process, the illumination parameter was allowed 
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to float but did not depart from 2 in Fig 4.2A during equilibration.  Allowing an extra degree of 

freedom and more equilibration steps, however, did improve the fit slightly (Fig 4.2A).  

  There are two further possible explanations for the lack of fit in Fig 4.3.  One, parallel 

tempering is failing to find the best models by optimizing Equation (2) or two, there are two 

populations of oscillators for the 6 h and 12 h day, indicating a limitation on light entrainment. 

To test these hypotheses we implemented a novel class of ensemble methods [24] for fitting 

models to data utilizing genetic algorithms (see Materials and Methods) to maximize Equation 

(2) during the equilibration phase of Markov Chain Monte Carlo followed up by Metropolis-

Hastings Monte Carlo in the accumulation phase. 

In a genetic algorithm 20-80 particles (i.e., models) were created in 5, 10, or 20 swarms 

to live on the 35 dimensional parameter space (with the illumination parameter 𝑓𝐼𝐿 being fitted as 

well) [26, 27].  The swarms of particles moved stochastically in the parameter space as specified 

by Equation (3-4) or (3-5) in Materials and Methods during a generation. The best particle at the 

end of 600 or 1000 generations (Table 4.1) was used to initiate a Metropolis-Hastings Monte 

Carlo accumulation run.  A distinct genetic algorithm was also tried in Table 4.1 with different 

dynamics in (3-5) and no recombination.  The genetic algorithms were implemented on GPUs. 

A total of 14 such independent runs of the genetic algorithms were conducted with 5, 10, 

or 20 swarms and 4 particles in a swarm, on the same data set used by parallel tempering (Fig. 

4.3) to examine the impact of the genetic algorithm and swarm number, for example, on 

calculation time and finding the optimum to (2).  There was no significant difference in the final 

chi-squared statistics between the two types of genetic algorithms in Table 4.1 by a Wilcoxon 

Rank Sum Test at the 0.05 [48].   
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Figure 4.3 The predicted periodograms of the neutral model with no intercell communication 

were fitted with parallel tempering to the observed periodograms of 4 experiments (described in 

Materials and Methods), one D/D/ and three L/D with 6 h, 12 h, and 36 h days, respectively, with 

two major discrepancies for the 6 h day and 12 h days each with its two peaks.   Each 

periodogram represents an average over the individual periodograms of at least 1,000 single 

cells.  The model appeared only to fit one of the peaks of the single cell data in the 6 h day.  The 

fitted periodograms were obtained by an accumulation run with updates from a particular kind of 

MCMC method called parallel tempering (see Materials and Methods).  Observations were taken 

at half hour intervals over L equidistant observation times.  The duration of the experiment is T.  

The sampled frequencies in the periodogram are denoted by 𝑓𝑙 =
𝑙

𝑇
 , 𝑙 = 1,… [

𝐿

2
]. The first 240 

indices 𝑙 𝑜𝑓  frequencies in the periodogram are for the D/D experiment.  The next 256 indices of 

frequencies are for the L/D experiment with a 6 h day.  The next 201 indices are for the L/D with 

a 12 h day.  The last 256 indices are for a 36-h day.   For the D/D experiment the x-axis is the 

index 𝑙. The x-axis is 𝑙 with a shift of 240 for a 6 h day, then with 240+256 for a 12 h day, and 

finally with 240+256+201 for a 36-h day to separate out the periodograms on the same graph.  

The periodograms of the experiments and the model were Rhodamine B normalized, detrended, 

and bias corrected as described in Materials and Methods. 

 

In the first run, the chi-squared statistic was reduced by almost half from the best parallel 

tempering run with 𝜒2 = 5410 in Fig 4.2 to 𝜒2 = 2708.05 by the best genetic algorithm (in red in 

Table 1).  All genetic algorithms, using a random start on the parameter space, outperformed 

parallel tempering (Table 1) on the same data set.  The chi-squared statistic per data point was 

then 𝜒2/𝑛 = 2708.05/953 =2.84, which is better than other published ensemble fits by 
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deterministic models on the macroscopic scale [31]. The longest time for an equilibration run 

with a genetic algorithm for an 80-particle algorithm was 25 h. This is an order of magnitude 

faster than the equilibration run using parallel tempering in Fig 4.2A. Two 20 particle algorithms 

were eliminated from the competition for poorer optimization results (Table 1), leaving 12 

competing genetic algorithms.   

 To capture the behavior of the cellular clocks under the model ensemble derived from the 

best genetic algorithm, the four periodograms were plotted as a function of period  (i.e., the 

inverse of the sample frequency 𝑓𝑙 ) in Fig 4.4 for ease of interpretation rather than the index of 

the frequency in Fig 4.3.  As can be seen, the fit is extraordinarily good.  For example, the model 

and experimental periodograms are hard to distinguish in Fig. 4.4B.  In Fig 4.4B and Fig 4.4C 

the model tracked quite well to the 6 h and 12 period, respectively. The model succeeded 

completely in tracking to the period at the driving frequency of the light signal. Over the range of 

a 6 h day to 36 h day there was no observed limitation to the ability of the model to produce a 

population of oscillators that tracked to the day experienced, unlike the limit to entrainment for 

cells in the SCN[18].  In conclusion, the introduction of genetic algorithms appears to support 

the hypothesis that the limits of entrainment seen in cell tracking in Fig 4.3 to the driving light 

signal, using parallel tempering, is an artifact of not finding the maximum to equation (2).   

 One further test was conducted using the remaining 12 independent runs of genetic 

algorithms to ascertain whether the optimum in Equation (2) was local or global.   

As can be seen in Fig 4.2B, all runs converged approximately to the same chi-squared statistic, 

strongly suggesting a global optimum had been achieved. Each of the 12 independent runs in 

Table 1 was then used to construct an accumulation run of 10,500 updates with Metropolis-

Hastings Monte Carlo[17] and combined to produce a final reconstruction of the likelihood in (2) 
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together with its summary of the parameter distribution in Table 4.2 (as described in Materials 

and Methods).  The best model in the accumulation run had a 𝜒2 = 2671.95 

 One standard control for MCMC experiments is to plot the parameter values in an 

accumulation run versus sweep (i.e., the time taken on average to visit once to each parameter in 

the model).  If the accumulation run were not complete, there would be trends in some 

parameters with sweep.  All of the plots showed no trend, indicating that the accumulation run 

was successful.  The plots also display which parameters are well specified in the ensemble.  For 

example, the wc-1 stabilized mRNA decay rate (D7) and the protein-protein interaction (C1) are 

tightly specified, while other parameters, such as the FRQ protein decay rate (D6) is not tightly 

specified.  

  

4.4.3 KINETIC RULES FOR THE CLOCK AT THE SINGLE CELL LEVEL  

The series of 3 light entrainment experiments with the D/D experiment with 953 frequencies in 

the 4 periodograms in Fig 4.4 provided a strong test of the clock network in a single cell, but 

they also provided precise estimates of the rate constants and initial gene and cognate mRNA 

and protein counts in a cell as well (see standard errors in last column of Table 4.2). These 

parameter estimates (i.e., rate constants and initial conditions for molecular counts of species) 

provided a means to determine if single cells play by  the same or different rules than cells in 

aggregate at the macroscopic level [31]. 

A comparison was made between a published ensemble only derived from the D/D data 

using an accumulation run from parallel tempering, in which an adequate fit was obtained[17], 

with an ensemble (Table 2) derived from D/D data together with the L/D data using an  
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Figure 4.4 The average periodograms for single cells as a function of period for the same four 

experiments in Fig 4.3 (D/D, L/D with 6 h day, L/D with 12 h day, and L/D with 36 h day) were 

fitted very well by the model ensemble(χ2=2708.05) using Genetic Algorithms. (A) D/D 

experiment; (B) L/D with 6 h day; (C) L/D with 12 h day; (D) L/D with 36 h day. Data are the 

same as in Fig. 4.3, but power is presented as a function of period in each periodogram.  The 

period is the inverse of the sampled frequency, namely 
1

𝑓𝑙
, 𝑙 = 1,… , [𝐿/2]. 

 

accumulation run from genetic algorithms that also provided a remarkably good fit to the 

combined data set (Fig. 4.4).  In comparing these two model ensembles there was remarkable 

agreement in the specification of the genetic network, but there are several changes in the rate 

constants from the estimates based only on the D/D experiment in Table 2.  For example, the 

translation rates (L1, L3, and Lc) were lower on the clock mechanism genes based on the 4 

experiments vs. the one D/D experiment with 1,591 cells.  
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Table 4.2 Ensemble means and standard errors indicate that the parameters in stochastic network 

for single cells are tightly specified by Markov Chain Monte Carlo using genetic algorithms with 

the D/D experiment and three L/D experiments described in Materials and Methods.    

Parameter 

Initial Parameter 

values from MCMC 

Deterministic model 

ensemble (Yu et al., 

2007) 

Initial Parameter 

values from 

published ensemble 

(column 2) in 

molecular number 

units of stochastic 

network from D/D 

experiment[17] 

(column 3) 

Mean parameter 

values from 

model ensemble 

computed by 

Parallel 

tempering for 

D/D experiment 

Standard error 

(SE) of 

parameter 

value across 

ensemble 

computed by 

parallel 

tempering for 

D/D 

experiment 

Mean 

parameter 

values from 

model 

ensemble 

computed by 

genetic 

algorithms for 

D/D and L/D 

experiments in 

Metropolis-

Hastings 

accumulation 

run 

Standard error 

(SE) of 

parameter value 

across ensemble 

computed by 

genetic 

algorithms for 

D/D and L/D 

experiments in 

Metropolis-

Hastings 

accumulation 

run 

Number of 

cells - 1591 (D/D only) 

1591 (D/D only) 1591 (D/D 

only) 

4 experiments 

(D/D + 3 L/D) 

4 experiments 

(D/D + 3 L/D) 

u_r0 3.99924 113 2156.705728 68.14603254 249 1.94493283 

u_r1 0.442441 18 22.46137677 0.872953544 266.5025 1.24742302 

u_p 4.24E-07 459 2144.149238 68.74768856 267.75 1.41999973 

f_0 0.356365 1 0.465055176 0.01143672 033333333 0.00785783 

f_1 0.0824576 0 0.534944824 0.01143672 0.6666667 0.00785783 

f_r 4.90E-06 31 59.15869679 2.637452857 263.66667 1.53551295 

f_p 3.0804 345 2534.336311 77.72114325 258.83333 0.96610217 

w 9.24126 101 55.40042039 1.674320488 280.11306 1.34419102 

g_0 0.0066195 1 0.71623752 0.010337149 0.5 0.00833449 

g_1 2.59E-06 0 0.28376248 0.010337149 0.5 0.00833449 

g_r 1.17E-06 26 35.67840252 1.030258983 234.41667 1.45223506 

g_p 1.37E-05 102 59.19075145 4.920903774 283.93833 1.01849186 

A 0.000658482 6.06E-13 2.56E-10 7.31E-12 2.24E-10 1.10E-11 

Abar 0.546986 0.546986 1.589532708 0.035661845 0.6046986 0.01326434 

S1 0.061594783 83.70771546 80.12566921 0.302471515 82.372323 1.03259487 

S3 0.00146575 3.569116497 0.400641074 0.036565894 13.491623 0.42722599 
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S4 2.2396 5453.449297 8316.020583 100.2852188 77.524423 1.13421469 

D1 0.723678 0.723678 1.294999006 0.030289616 71.2760416 2.63473865 

D3 0.299703 0.299703 4.382612039 0.181101578 6.16109147 0.17691415 

C1 0.0428595 4.81E-05 0.000932789 2.47E-05 9.22E-05 4.25E-06 

L1 31.7758 4.244678204 4.777735371 0.106626479 2.60684774 0.04948995 

L3 3.02387 0.485087349 0.665600817 0.011127036 0.09315913 0.00269597 

D4 0.00323262 0.00323262 0.08474029 0.004700587 0.05674687 0.00194278 

D6 0.15183 0.15183 0.193685712 0.002236097 12.0326238 0.28052851 

D7 0.138387 0.138387 2.130911791 0.090030385 0.11260178 0.00432734 

D8 0.00248668 0.00248668 0.007744621 0.000182717 0.00014153 3.61E-06 

C2 0.162687246 0.162687246 1.515554675 0.077548547 95.9668318 3.1203002 

P 19.5648 3.12E-11 2.72E-09 4.83E-11 3.46E-08 6.82E-10 

Ac 4.06813 7.82E-09 1.86E-08 2.55E-09 3.44E-05 1.89E-06 

Bc 2.52197 2.52197 2.581096866 0.040197442 0.88230334 0.0199371 

Sc 1.01E-06 73.80414613 61.51499414 1.109629713 11.0853255 0.25892314 

Lc 1.15E-08 2.231095711 1.61524392 0.017335914 0.01161864 0.00012954 

Dcr 0.219758 0.219758 0.150810052 0.00291715 0.27129774 0.00638981 

Dcp 0.696903 0.696903 0.54063952 0.006141903 0.0224811 0.00035852 

fIL   - - 16.4900328 0.38777036 

 

 

The biggest surprise is in the mRNA stability of wc-1.  In the fitting of the model to all 4 

single cell experiments the derivative mRNA wc-1r1 was more stable as measured by D7 than in 

the D/D single cell experiment alone.  Having a stable wc-1r1 mRNA has been argued to be 

essential for oscillations at the macroscopic scale [22]. In the network fit to all of the single cell 

data the modified wc-1 mRNA, wc-1r1, is stable.  

For example, the decay rate D7 = 0.11 +/- 0.0043 under all 4 experiments with a long lifetime of 

1/D7 = 8.88 h as measured macroscopically[22] versus D7 =2.13 +/- 0.09 in the D/D experiment 

alone.   
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The single cell data in the D/D experiment alone were not sufficient to confirm this result 

found macroscopically.  For models fitted to the D/D experiment alone, the decay rate (D7) was 

found to be D7 = 2.13 +/- .09 [17].  Evidence against the parallel tempering method being the 

cause of the discrepancy in the decay rate (D7) comes from the fact that fitted ensemble achieved 

by parallel tempering was an adequate fit to the average periodogram of the D/D data.  As a 

caveat, if we had implemented a longer equilibration run, we might have achieved the results of 

MCMC runs using genetic algorithms reported here.  When the lines of different genetic 

algorithm accumulation runs are close together, as for the translation rate (Lc) for CCG-

2p:mCherry, that is indicative that different MCMC runs converged to the same optimizing  

parameter value.  For instance, in the case of the translation rate the ensemble covers the values 

from .002 to 0.02. 

Also a comparison was made between the ensembles computed here using parallel 

tempering  (Fig 4.3) and with those using the genetic algorithms (Table 1) with respect to the 

illumination parameter (𝑓𝐼𝐿)  on a common data set (D/D + 3 L/D experiments). In allowing the 

illumination parameter to float, the final value of 𝑓𝐼𝐿achieved a much larger value of 16.49 +/- 

0.39 than that derived under the use of parallel tempering, namely 𝑓𝐼𝐿= 2. 

There are two sources of variation captured in the standard errors in Table 2 on these 

parameters.  There is variation in the standard errors across models, and there is also variation in 

the parameters estimates due to stochastic intracellular noise.  Both sources of error are reflected 

in the standard errors. Some parameters, such as the decay rate of the stabilized wc-1 mRNA 

(D7), are quite tightly specified, while other parameters such as the transcription rate of frq (S4), 

have considerable variation. 
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Generally in comparing the rate constants obtained from all four experiments (column 6)  

to those derived from macroscopic experiments (column 2) [22] using Euclidean distance on the 

parameters in common, the agreement was much better than just based on the D/D experiment 

alone (column 4).  The only rate constant out of line with the macroscopic limit appeared to be 

the decay rate of FRQ [22]. There is also considerable variation in the estimates of this decay 

rate. The conclusion is single cells appear to play by similar rules as aggregates of 107 cells. 

 

4.4.4 THE STOCHASTIC INTRACELLULAR NOISE LEVEL CAN BE  

EXPERIMENTALLY DETERMINED AS A PARAMETER IN A MODEL  

In chapter 2 evidence was presented that the RNA/DNA and protein/DNA ratios for CCG-2 set 

the levels of stochastic intracellular noise in a cell, and hence these ratios were measured.  They 

continue to serve a similar role in a system with light entrainment (Fig 4.5).  As the RNA/DNA 

and protein/DNA ratios are increased, leading to larger amplification in RNA counts and protein 

counts, there was a general decrease in the noise in the system (Fig 4.5). Imagine the red dot as a 

ball; from most places on the surface the ball rolls to the lowest point in the front left corner of 

Fig. 4.5.  The only caveat is a shallow ridge at low protein/DNA ratios.   

The relationship between the stochastic intracellular noise and the RNA/DNA and 

protein/DNA ratios is not in and of itself surprising[34, 49]; however, exploiting this relationship 

to determine “size of the cell” appears to be new.  This ability to determine empirically the “size 

of the cell” is why the relation in Fig. 4.5 is presented. In this way these ratios can be used to 

manipulate the level of stochastic intracellular variation.  These ratios were experimentally 

determined (red dot) previously to set the level of noise in each cell[17]. 
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4.4.5 THE PHASE VARIATION OVER TIME BETWEEN CELLS PROVIDES AN  

INDEPENDENT TEST OF THE GOODNESS OF FIT 

There are three ways to characterize periodic processes, by their period, amplitude, and 

phase [6].  The period and amplitude are captured in the periodogram or power spectrum (e.g., 

Fig 4.4), which was used to fit the model ensemble in equation (2). The remaining measure, 

phase, is functionally independent of the periodogram and was not used to fit the stochastic 

network to the single cell data and hence is available to test goodness of fit of the stochastic 

network (see chapter 2). 

There are a variety of ways to measure phase, as described in chapter 3. In addition to its 

independence from the periodogram, the continuized Hilbert phase measure was used to assess 

whether or not synchronization is taking place between single cells experiencing a common 

driving light signal [5]. The continuized Hilbert phase measure increases linearly with time for a 

sinusoidal process, but for a process experiencing synchronization the phase curve is nonlinear 

[5] – the phases of cellular clocks change towards each other as they synchronize. 

To provide an independent test of the stochastic network in Fig 4.1, the average phase 

and percentiles of the phase distribution at time t were computed over time (t) for cells in all four 

experiments both for the data and for the model (using 1,024 generated single cell Gillespie 

trajectories) (Fig 4.6). For the D/D and 6 h day L/D experiments the goodness of fit failed at the 

75 h and 125 h mark, as the data (in red) drifted beyond the percentiles of the model phase 

(blue). In contrast, the percentiles of phase for model and data remained overlapping for the 12 h 

day and 36 h day L/D experiments. 

 



118 

 

 

Figure 4.5 Stochastic noise in CCG-2 usually decreases with increases in hypothesized ratios of 

RNA/DNA and Protein/DNA within a single cell.  The total stochastic noise σf
2 averaged over 

frequencies (f) in CCG-2 expression is computed from 1024 Gillespie trajectories from the best 

model in S Table 1 with a 𝜒2 = 2671.95. The best model selected was one with minimum chi-

squared statistic based on the Likelihood in Equation (2) for the D/D and 3 L/D experiments 

from an accumulation run based on 12 genetic algorithms in Table 4.1.  The red dot denotes the 

experimentally determined ratios previously[17] and corresponds to RNA/DNA and 

protein/DNA ratios of 128.7 and 412, respectively. The model with the best chi-squared statistic 

in the accumulation run was modified to different RNA/DNA and Protein/DNA ratios for each 

point on the grid above. A total of 1,024 Gillespie trajectories were generated for each model on 

the grid.  The variance in the 1,024 resulting periodogram height was computed for each sample 

frequency 𝑓𝑙 . These variances were summed over all frequencies to produce the noise on the z-

axis in Fig. 4.5. 

 

The phase plots also provided information about the cellular clocks in single cells.  Phase 

plots for both the model and data in the 12-h day and 36-h day L/D experiments were bent and 

hence demonstrated synchronization to the driving light signal.  Also, all plots showed increased 

variation in phase over time, capturing the tug of war between stochastic intracellular noise 

generating phase variation and light producing changes in phase synchronization and hence the 

phase mean. The degree of linearity of the D/D and 6-h day L/D experiment (r=.9995 and 

r=.9998, P < .0001) would also suggest that a sinusoidal approximation would be a good one 
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[28]. The fact that the D/D and 6 h day L/D experiments did not demonstrate a nonlinear 

response in time and hence synchronization was consistent with the synchronization measures 

for the D/D (Kuramoto K = 0.08+/-.0026) and 6 h day L/D (K.=0.30+/-.0066) experiments being 

smaller than those for the 12 h day L/D (K=0.42+/- 0.0076) and 36 h day L/D (K = 0.33+/-

0.0069) experiments[5].  For example, the maximum in light synchronization was measured to 

take place with a 12-h day, which also show a nonlinear response in the phase curve over time 

[5]. 

Stochastic networks have one other dimension to goodness of fit absent in deterministic 

network models.  Having determined what the “size of a cell” is by measuring the RNA/DNA 

and protein/DNA ratios in Fig 4.5, it is natural to ask how these ratios affected the goodness of 

fit of the model periodograms to the average of the observed single cell periodograms.  These 

ratios were varied substantially about their measured values to see the effect on goodness of fit 

(Fig 4.7).   

In the Materials and Methods there is a description of how the ratios are varied without 

altering the dynamics of the system in Fig. 4.1.  

The fitting of the D/D data would leave us to hypothesize that the goodness of fit would 

be robust to variation in the level of stochastic intracellular noise captured by these ratios (see 

chapter 2). We found the distribution across the fitted model ensemble was quite robust to 

variation in these ratios (Fig. 4.7).  This robustness property can be predicted from the Chemical 

Langevin Equations that approximate the stochastic network in Fig 4.1. 
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4.4.6 IS THERE ONE INTERMEDIATE OPTIMUM IN THE OSCILLATORY SIGNAL AS  

A FUNCTION OF STOCHASTIC INTRACELLULAR NOISE?  

 The heart of the experiments and calculations in this paper is to examine whether or not 

the working model in Fig 4.1 displays Stochastic Resonance, i.e.,  a nonlinear relation between 

the signal/noise ratio captured in the power spectra (Fig 4.4) and the stochastic intracellular noise 

in the system (Fig 4.5) [10].  The noise is varied by altering the RNA/DNA and protein/DNA 

ratios in the cell in Fig 4.5.  High values of the ratios imply low noise while low ratios imply 

high noise in Fig 4.5. Reducing the ratios by a constant factor generally decreases the power at 

the intrinsic frequency (Fig 4.8a) or at the driving frequency (Fig 4.8b-4.8d).  In contrast as the 

ratios are increased, there is a spike in the signal at the resonance, which then fades away as the 

ratios are increased further.  These changes in the ratios were done by altering the initial 

molecular counts of species without altering the rates constants in the best fitting model to vary 

the stochastic intracellular noise. For the 36-h day the ratios had to be increased further to see the 

signal to noise ratio diminish. The results are more easily summarized in Fig 4.8.  

The ratios are varied from low (high noise) to high (low noise), and the power in each 

experiment is presented at the intrinsic frequency of the cellular oscillators (~21 h) or at the 

driving frequency (~6 h, ~12 h, or ~36 h, depending on the L/D experiment) in Fig. 4.8. There is 

a clear nonlinear relation for each day that peaks at the same ratio of 15 X the original ratios 

(128.7 for RNA/DNA and 412 for protein/DNA).  The intrinsic frequency of ~21 h is plotted as a 

control (in red) for the L/D experiments.  

The effects of stochastic intracellular noise on the average Gillespie trajectory are shown 

for a 12-h L/D cycle (Fig. 4.9).  This L/D cycle had the highest Kuramoto K order parameter 
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among the four experiments.  As can be seen, away from the Stochastic Resonance there is a 

degradation in the circadian signal, and at the stochastic resonance there is an amplification of 

the circadian signal.  This is a classic example of stochastic resonance in a biological system 

[10]. These striking differences in the circadian oscillations arise between cells that are 

genetically identical! 

 

4.5 DISCUSSION  

 There are three hypotheses about how oscillations arise at the single cell level.  One 

hypothesis is that stochastic noise contributes to the oscillations, a theory known as Stochastic 

Resonance [10].  Two teams indicated how Stochastic Resonance could serve as a mechanism to 

generate such oscillations [50, 51] and possibly to synchronize cellular oscillators.  A second 

hypothesis is that there is a chemical signal through quorum sensing by cellular clocks that 

isinvolved in synchronization of single cell oscillators [5, 7], thus explaining circadian rhythms 

on the macroscopic scale of 107 cells.  A third possibility is cell cycle gating of the single cell 

oscillators to reinforce the oscillations [11-14].  Under this third possibility there may be no 

specific genes that induce coordination between different single cell oscillators as for example, in 

a quorum sensing hypothesis of cell-to-cell communication. 

 The advantages of this study using the model system, N. crassa, is that the single cell 

environment can be set up to test each of these hypotheses individually using microfluidics [15].  

Here a flow focusing, droplet generating microfluidics device was used to isolate N. crassa 

cellular oscillators for testing Stochastic Resonance [5].  The microfluidics device isolated cells 

in droplets to prevent any form of chemical communication, as under a quorum sensing  
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Figure 4.6 The phase plots as a function of time indicated that there are limitations on goodness 

of fit for the D/D experiment and 6 h day L/D experiment. 
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Figure 4.7 The goodness of fit as measured by the chi-squared statistic in (2) was robust to 

variation in the ratios of RNA/DNA and protein/DNA and hence the stochastic intracellular 

noise from Fig 4.5. Histograms of the chi-squared statistics of 1,200 models in the accumulation 

run for determining the chi-squared empirical distribution are shown. The ratios of RNA/DNA 

and protein/DNA used in each of the 1,200 models was, respectively: (A) 128.7 and 412; (B) 170 

and 480; (C) 100 and 380; (D) 150 and 450.  A description of how the ratios are varied without 

altering the rate constants is shown in the Materials and Methods.  

 

hypothesis [5].  The media were selected as well so that there was no cell division to eliminate 

cell cycle gating as a hypothesis [6].  The model system was exploited in such a way as to be 

able to take advantage of light entrainment of isolated N. crassa single cell oscillators [5], an 

advantage not present in other model clock systems, such as mammalian [19] or Cyanobacterial 
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[18] model clock systems. It was possible to demonstrate here strong support for a neutral model 

without any cellular communication using both light entrainment experiments and D/D 

experiments to specify a model ensemble in Fig 4.1 describing cellular clocks (Fig. 4.4).  In four 

independent light entrainment experiments the model ensemble was able to capture the period 

and amplitude behavior of the single cell oscillators from a 6 h L/D cycle to a 36 h L/D cycle at 

the single cell level (Fig. 4.4).  The highly successful fitting was robust to variation in “cell size” 

present in stochastic networks, as captured in the proxies for cell size, the measured RNA/DNA 

and protein/DNA ratios (Fig 4.8).  

The fitted model ensemble displayed the same stochastic resonance across all four D/D 

and L/D experiments as the stochastic intracellular noise was varied through the RNA/DNA and 

protein/DNA ratios (Fig 4.8). Striking differences in the strength of circadian oscillations were 

seen about the stochastic resonance even when all cells were genetically identical (Fig. 4.9). This 

finding is reminiscent of the findings of noise effects on damped linear oscillators used to model 

single cells of the mammalian Suprachiasmatic Nucleus (SCN) [52]. This neutral model with 

Stochastic Resonance then is a promising framework for testing whether or not Stochastic 

Resonance can explain by itself the origin of circadian rhythms on a macroscopic scale from the 

cellular clocks operating on a microscopic scale.  

There were some limitations to the neutral model supporting Stochastic Resonance.  The 

periodograms (Fig 4.4) used to fit the stochastic network in Fig 4.1 captured the amplitude and 

period variation in cellular clocks remarkably well (𝜒2 = 2671.95 across 953 frequencies from 

four periodograms and with 35 model parameters with a chi-squared statistic per data point of 

𝜒2

𝑛
= 2.80), but the periodograms are functionally independent of the phase variation [6, 28], 

when measured by Hilbert phase [53].     
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Figure 4.8 The power at the driving frequency or intrinsic frequency for a cellular oscillator is a 

nonlinear function of the stochastic intracellular noise and takes a maximum at a ratio of 15 for 

RNA/DNA and protein/DNA for all four independently conducted experiments.  The stochastic 

intracellular noise was varied by changing the initial molecular counts of species (but not the rate 

constants) by a ratio of: 1/7, 1/10, 1/12, 1/40, 1/100, 1/170, 4, 8, 12, 15, 30, or 50. (A) D/D 

experiment; (B) L/D 6 h day; (C) L/D 12 h day; (D) L/D 36 h day.  The model used to generate 

the power values above is the best fitting model.  The power values are derived from the 

periodograms.  For the L/D experiments the power at the intrinsic frequency of a cellular 

oscillator is added as a control. 

 

 

 The phase measure used here and derived from the Hilbert phase [53], by virtue of its 

functional independence of the periodogram [28], was used to test goodness of fit to the single 

cell experiments (Fig 4.6). The results were that for the L/D 12 h and 36 h day the phase of the 



126 

 

 

Figure 4.9 The effects of stochastic intracellular variation at the resonance was to amplify the 

circadian signal, but away from the resonance the signal was degraded.  These FRQ trajectories 

are averages over 1,024 Gillespie trajectories at the best model (S Table 1). The y-axis is the 

predicted number of the FRQ oscillator protein over time. The RNA/DNA and protein/DNA 

ratios are at 1X, 15X, and 30X of their measured values of 128.7 and 412, respectively.  The 

stochastic intracellular noise was varied by changing the initial molecular counts as in Fig 4.8. 

      

model ensemble and single cell data over time were consistent with each other (Fig 4.6C and Fig. 

4.6D); however, there were some departures from model ensemble predictions of phase over 



127 

 

time after 75 h (Fig 4/6A) for a D/D experiment or 125 h for the single cell data, see Fig. 4.6B 

for 6 h L/D experiment. As can be seen in the fan shape of the confidence bands for phase over 

time (Fig 4.6), there is a tug of war between the substantial role of stochastic intracellular noise 

generating phase variation between cells and the effect of the light signal on the mean phase of 

the cellular clocks. 

One possible explanation for the departure may be that stochastic intracellular variation is 

winning the war as the system evolves in time, causing the phase of single cells to drift outside 

the confidence bands of the model ensemble when the synchronization with the light signal is 

weaker [5] in Fig 4.6A and Fig 4.6B.  Some other mechanisms for introducing noise into the 

kinetics may be needed [54].   

The fact that noise plays such a significant role in generating phase variation raised the 

possibility that the behavior of cellular clocks may be fundamentally different from the rules of 

clocks at the macroscopic scale of 107 cells/ml [22].  We tested this possibility by examining the 

fitted rate constants derived from single cell data.  The result was excellent agreement with the 

characterized dynamics on the macroscopic scale [22, 31] in Table 2. For example, the prediction 

that the lifetime of the wc-1 mRNA being long as measured [22] on a macroscopic scale, held up 

on a microscopic scale when light entrainment data for single cells were added (Table 2).  At this 

stage there was little evidence for cellular clocks playing by different rules than those at the 

macroscopic scale of 107 cells. 

There are a variety of kinds of resonances that could be at play in the circadian system of 

single cells of N. crassa [5].  For example, the resonance could be due to noise acting near a 

single excitation state in the model [55], as in the phase resetting of cyanobacterial cells [21] or 

alternatively, due to noise moving the system from one equilibrium point to another as in a 
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bistable switch [55].  One characteristic of a stochastic resonance, whether it be introduced as in 

a signal processing tool or naturally occurring, is the presence of at least one stochastic 

switch[56].  Sriram and Gopinothan [57] were the first to hypothesize such a stochastic 

resonance in the N. crassa circadian system.  The basis for such a stochastic switch in Fig. 4.1 

lies in the stochastic switching on or off of the oscillator gene frq or the ccg gene [5].  The one or 

few copies of genes themselves in Fig. 4.1 provide the basis of the stochastic switching 

mechanism.    

Further experimental and theoretical studies of the model (Fig. 4.1) are required to 

characterize the resonance.  For example,  N. crassa single cell behavior through microfluidic 

experiments to examine transcriptional bursting [58, 59] and calculations of the mean amplitude, 

period, and phase of the model [60] will be needed to arrive at details of the resonance 

mechanism.  Some of this work has already begun on single cell measurements of the 

mammalian SCN in a phenomenological way by fitting simplified damped or self-sustained 

oscillators to single cell data on circadian rhythms of the SCN [52]. 

There are other features of the genetic network (Fig. 4.1) that are hypothesized to mediate 

the effects of stochastic intracellular noise other than through a resonance [49].  Andreas Wagner 

[61] has demonstrated by an MCMC analysis of simple two-gene circadian oscillators that have 

interlocking regulatory connections that are more likely to be robust in period.  Liu and 

colleagues provided experimental evidence on a macroscopic scale that the positive feedback 

loop by FRQ on wc-1 mRNA involving (C1) [62] in Fig. 4.1 functions to provide stability and 

robustness to the clock.  It would be interesting to know what effect stochastic intracellular noise 

has on single cell circadian oscillations when the positive feedback loop in Fig. 4.1 is removed. 
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Yu et al. [22] reviewed experimental evidence for each reaction in the topology in Fig. 

4.1 on a macroscopic scale. As more data are gathered, it may be necessary to alter the topology 

of the network in Fig. 4.1 as another parameter in the model.  Al-Omari et al. [37] developed 

ensemble methods to identify the topology of the network using the supernet.  It may be possible 

to extend these supernet methods to the single cell level using single cell sequencing [63], 

allowing a  reassessment of the topology in Fig. 4.1 at the single cell level.” 

 What made the results here possible was the development of new fitting methods for 

stochastic networks [17] in particular and for ensemble methods in general [23].  A longstanding 

problem (20 years) for ensemble methods applied to oscillatory systems has been the inability to 

generate successfully a fitted model ensemble without an initially informed guess as to the rate 

constants and initial species concentrations [23].  We were so limited in the development of 

finding an ensemble of stochastic networks in Fig 4.1 using existing ensemble methods with 

parallel tempering in Fig 4.3 [17]. Here by the introduction of genetic algorithms into the 

equilibration phase of a Markov Chain Monte Carlo reconstruction of the likelihood for a 

stochastic network in Equation [2],  a random initialization of genetic algorithms (Table 1) 

outperformed existing parallel tempering methods starting with an informed guess as to model 

parameters [17].  These genetic algorithms also yielded solutions in less time by an order of 

magnitude (Fig 4.2).  As a result the speedup of the genetic algorithms could be used to generate 

multiple MCMC runs, providing evidence that a global optimum in the fit of the model ensemble 

was achieved (Fig 4.2B). 

 The ability to fit stochastic networks to single cell data quickly and efficiently suggests 

new microfluidics experiments to test the physical hypothesis of Stochastic Resonance in 

biological systems.  The prediction of only one stochastic resonance across light entrainment 
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experiments in single cells provides a unique opportunity to test the Theory of Stochastic 

Resonance in a biological system [10]. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

In this thesis we used stochastic models to study oscillatory biochemical networks. We 

focused our study on the clock network of the fungal system Neurospora crassa.  

In chapter 2, we derived a method for inferring the parameters of the clock network assuming its 

temporal evolution is stochastic. For this, we used Markov Chain Monte Carlo (MCMC) 

methods, namely Metropolis-Hastings and Parallel Tempering algorithms to fit the average 

periodogram of 868 single-cell trajectories of the clock-controlled gene’s protein (CCG) 

observed over a 10-day period. We obtained a very good fit using Parallel Tempering algorithm 

and we were able to test Stochastic Resonance Hypothesis to see whether the intracellular noise 

was the one driving the oscillations. In the process we developed a method for separating the 

detection noise from intracellular noise and were able to do a bias-correction of the average 

periodogram. 

In chapter 3 we discussed several measures of phase and we saw how they can be used to 

measure the synchronization of cellular oscillators. They are important because they can provide 

a goodness of fit measure between observed and simulated data independent of average 

periodogram fitting. 
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In chapter 4 we extended our models from chapter 2 to try to fit the single cell data 

observed under different light-dark regimes. We saw that parallel tempering method was no 

longer good enough to fit the extended data. We used as an alternative two genetic algorithms to 

get a better sampling of the parameter space. These genetic algorithms provided a much better 

fitting than parallel tempering. We were able to fit very well the main frequencies in the light-

dark data and we tested again the Stochastic Resonance Hypothesis. We noticed that there was a 

single level of noise optimal for all 4 dark/dark and light/dark regimes, an amazing fact that may 

require further testing/investigation. 

In the future, we wish to developed ensemble methods that describe the synchronization 

of these cellular oscillators. We are going to use quorum sensing as a means of communications 

between cells and as measure of synchronization we will use intra-class correlation. While we 

have experimental data for cell isolated in droplets, with droplets containing up to 10 cells, we 

want to scale the models to 1000s of cells using the Mean Field approximation theory. 

Another line of research is to try to fit stochastic models to oscillatory data by developing 

methods that incorporate phase variation. Just using phase as a primary test for fitting the data 

will gives as new stochastic models that can be compared to the models we already obtained. 
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